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Abstract

Extracting optimal performance out of an orbit correction
system is an important component of accelerator design
and evaluation. The question of effectiveness vs. economy,
however, is not always easily tractable.  This is especially
true in cases where betatron function magnitude and phase
advance do not have smooth or periodic dependencies on
the physical distance.  In this report a program is presented
using linear algebraic techniques to address this problem.
A systematic recipe is given, supported with quantitative
criteria, for arriving at an orbit correction system design
with the optimal balance between performance and econ-
omy.  The orbit referred to in this context can be general-
ized to include angle, path length, orbit effects on the
optical transfer matrix, and simultaneous effects on multi-
ple pass orbits.

1   INTRODUCTION

In designing orbit correction systems simple rules such as
phase advance counting are often followed in placing
monitors and correctors.  While such rules work well with
smooth, periodic betatron functions and phase advances,
one may encounter difficulty using them in areas where
large betatron variations contribute significantly to
response matrix elements compared to pure phase contri-
butions, or in areas where smooth periodicity is absent.
When these problems are present, it is difficult to arrive at
aglobal and quantitative design criterion for the orbit cor-
rection system based on phase advance counting.  Here we
present a self consistent program based on response matri-
ces.  It ensures theglobally consistent application of the
same quantitative criteria for observability, controllability
and non-degeneracy defined by the designer, independent
of the smoothness of the local lattice.

The program starts by evaluating the observability of the
monitor system to ensure knowledge of the orbit to the
same level everywhere.  An algorithm for adding monitors
is introduced in case of deficiency in observability.  The
redundancy of the monitor system is then evaluated and an
algorithm for monitor minimization introduced to ensure
that a minimally necessary set is obtained that would not
place unjustified demands on the corrector system.  We
follow by evaluating the controllability of the corrector
system to ensure control of the orbit to the same level
everywhere.  An algorithm for adding correctors is intro-
duced in case of deficiency in controllability.  The overall
redundancy of the corrector system is then evaluated and
an algorithm for corrector minimization introduced to
ensure that a minimally necessary set is obtained that

would not lead to large local orbits due to correction using
near-singular response matrices.  The  application of this
program to the CEBAF accelerator, where localized defi-
ciencies in monitors and overall redundancies in correctors
have been identified and corrected, will be described.

2   NOMENCLATURE

For simplicity we limit our discussion to the x-plane only
with the usual index assignments of 1, 2, 6 for position,
angle and momentum.  Generalization is straightforward.

2.1 Error-to-monitor response matrix MEM

The error-to-monitor response matrix MEM summarizes
the orbit disturbance at any monitor caused by any physi-
cal error which can affect any of the beam orbit coordi-
nates:

where Oi is the orbit disturbance at the i-th monitor and Ej
the magnitude of the j-th physical error, including injec-
tion errors, magnetic field errors, misalignments etc.. The
elements of MEM consist of optical transfer elements M11,
M12, and M16 from the sources of error to the monitors.  In
constructing MEM for subsequent analysis, one must iden-
tify all the major potential sources of errors that the entire
orbit correction system is designed to correct.  This usu-
ally includes quadrupole offsets, large dipole field errors,
suspected misalignments etc..  Any estimate on the rela-
tive magnitude of such errors can be incorporated into
MEM by properly scaling individual columns.

2.2 Error-to-all-location response matrix MEA

The error-to-all-location response matrix MEA summarizes
the orbit disturbance at all representative locations caused
by the physical errors described above.  These locations,
not tied to any physical elements, should effect a dense
coverage of the entire beam line and will be collectively
denoted by a set CA.

where Oi is the orbit disturbance at the i-th location.

2.3 Corrector-montior response matrix MCM

The corrector-monitor response matrix MCM summarizes
the orbit disturbance at any monitor by any corrector.

where Kj  is the magnitude of the j-th corrector kick.

______________________
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2.4 All-location-to-montior response matrix MAM

The all-location-to-monitor response matrix MAM summa-
rizes the orbit disturbance at any monitor caused by coor-
dinate error at any representative location in the set CA.

where Kj  is the magnitude of the error at the j-th location.

2.5 Corrector-to-all-location response matrix MCA

The corrector-to-all-location response matrix MCA sum-
marizes the orbit disturbance at all representative locations
caused by any corrector.

2.6 Singular value decomposition (SVD)

SVD is the process of decomposing a matrix M into the
product of three matrices U, W and V:

U and V afford useful physical interpretation when applied
to response matrices.  The rows of V represents orthonor-
mal combinations of the “actuators”, either errors or cor-
rectors, whose effects are magnified by the diagonal
elements of W before being realized as orthonormal orbit
patterns represented by the rows of U. SVD allows us to
decompose the response matrix into decoupled cause-
effect relations between linear combinations of the actua-
tors and monitors, with the magnification factors con-
tained in W.  The diagonal elements of W are called
singular values and the condition number  of M is the
ratio between the largest and the smallest singular values.

2.7 Null space vectors

The null space vectors EM for a given matrix M are the
vectors which are projected into 0 by M:

Notice we choose to have all EM’s normalized.

2.8 Pseudoinverse and projected components

The pseudoinverse M✝ of a given matrix M is defined as

The pseudoinverse is related to the projection operator
ΠM, which decomposes any vector X into components XM

and XM respectively inside and outside the subspace
spanned by the column vectors of M, through

where we have also defined the fractional components
PX

M and QX
M of X inside and outside the subspace

spanned by M.

2.9 Gram determinant and orthogonality

The Gram determinant GM of a matrix M is given by

where SMj is the j-th singular value of M.  The normalized
Gram determinantGM is defined as

3   THE OPTIMIZATION PROGRAM

In the following we outline the entire optimization pro-
gram using the quantitative measures defined in the previ-
ous section.  It should be noted that the general philosophy
of accelerator design demands the following numerology
to hold: , where NE, NM and NC are the
total number of potential errors, monitors and correctors
respectively.  Thus the matrix MEM always has more col-
umns than rows and the opposite is true for MCM.  One can
start the program with an arbitrary initial monitor-correc-
tor configuration and iterate until all criteria are satisfied.
A set of candidate locations for monitors and correctors
should be identified, for example at all quadrupole loca-
tions, in case additional monitors or correctors are
demanded in an iteration.  These sets will be denoted CM
and CC in the following.  We will also denote by CA the
set of all representative locations used for establishing
MEA.  Various cutoff numbers will be used for terminating
iterations.  Their physical meaning will be briefly
described, but not quantitatively elaborated.

3.1 Eliminating monitor deficiency

1. Determine cutoff  number R in units of orbit displace-

ment, a measure of the error-induced orbit anywhere that

is undetectable by existing monitors.

2. Obtain null space vectors  of MEM, calculate

 for all .

3. If any element of any VA is greater than R, identify

index j of the largest such element in VA.

4. Add to monitor list the candidate monitor in CM closest

to the location represented by the j-th location in CA.

5. Iterate steps 2-4 until all elements of VA are less than R.
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6. Perform SVD on MEM, obtain the row vector v of V

with the smallest singular value, calculate .

7. Iterate steps 3, 4 and 6 until all elements of VA are less

than R.

3.2 Minimizing monitor redundancy

1. Determine cutoff numbers R and S with 0 < R < 1, 0 < S

< 1.  R is a measure of the extent to which all error-

induced orbits contribute to a single monitor, and S is a

measure of the orthogonality of the monitors.

2. Calculate all NM fractional components , with Xi
the vector representing unit orbit peak at the i-th monitor.

3. Eliminate all monitors whose corresponding

exceed (1-R).

4. Calculate the normalized Gram determinants ,

continue if it is less than S to the NM-th power.

5. Perform SVD on MEM, obtain the row vector u of U

with the smallest singular value, identify the largest com-

ponent of u and its index i.

6. Eliminate the i-th monitor.

7. Iterate steps 4-6 until  is greater than S to the NM-

th power.

3.3 Eliminating corrector deficiency

1. Determine cutoff  number R and S, 0 < R < 1.  R mea-

sures the fraction of an error-induced orbit pattern uncor-

rectable by the correctors.  S measures corrector limits.

2. Perform SVD on MEM, obtain all row vectors u of U.

3. Calculate all NM fractional components , and all

NM pseudo-inverted vectors with ui the i-th

row vector of U.  Identify the maximum of each .

4. Continue if any  is greater than R, or any  is

greater than S.  In the former case identify the ui with the

largest , calculate .  In the latter

identify the ui with the largest  and set .

5. Calculate the normalized inner product between Ti and

all the column vectors of  MAM.  Identify index j with the

largest inner product.

6. Add the candidate corrector in CC closest to the location

represented by the j-th location in CA.

7. Iterate steps 2-6 until all  are less than R and all

 are less than S.

3.4 Minimizing corrector redundancy

1. Determine cutoff  numbers R and S, R measures the

evenness in the corrector effect distribution among moni-

tors.  S with 0 < S < 1 measures the orthogonality of the

corrector effects on the monitors.

2. Identify correctors forbidden from removal.

3. Perform SVD on MCM, if the condition number  is

greater than R, or the normalized Gram determi-

nants  is less than S to the NC-th power, continue.

4. Identify the row vector v of V with the smallest singular

value and the index j of the largest element in v.

5. If the j-th corrector is not forbidden, remove it.  If it is,

remove the largest non-forbidden corrector in v.

6. Monitor  and  defined in the previous pro-

gram relative to their respective cutoff numbers to ensure

freedom from deficiency.

7. Iterate steps 2-6 until  is less than R and  is

greater than S to the NC-th power.

3.5 Alternative to corrector redundancy

A more advantageous alternative to the last corrector
reduction program aimed at eliminating excessive orbit
correction caused by near-degeneracy is to introduce “vir-
tual monitors” which automatically keep the correction
result confined and free of singular behavior.  The algo-
rithm for adding virtual monitors is discussed in [1].

4   APPLICATION TO CEBAF ACCELERATOR

4.1 Monitor deficiency

The program 3.1 for eliminating monitor deficiency was
applied to the existing set of BPM’s in CEBAF.  It was dis-
covered that all elements VA are within a limit of 3 mm,
with the exception in the East Extraction Region with the
elements of VA exceeding 15 mm for all beam passes,
causing orbit excursions undetectable from available data.
This is supported by simulation and operation data.  It was
determined that additional BPM’s be installed according
to this program as the potential orbit error can cause emit-
tance distortion on the order of 10% due to suspected
higher order field in nearby dipoles.

4.2 Corrector redundancy

A corrector reduction program at CEBAF was performed
based on the program 3.4 above.  There have been opera-
tion and simulation evidences that an overly dense cover-
age of the beam line by correctors led to excessive
correction in the lower arcs and poor reproducibility in the
spreaders and recombiners.  66 correctors were removed
from a total of about 860 while the corrector deficiency
criteria were monitored at each step to prevent over-reduc-
tion.  The machine has been operating with this reduced
corrector set and no compromise in orbit correctability has
been observed.
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