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Abstract would not lead to large local orbits due to correction using

Extractin timal performan t of an orbit correcti near-singular response matrices. The application of this
acting optimal performance out of an orbit correc 0Erogram to the CEBAF accelerator, where localized defi-

tem is an important component of lerator i S . .
system IS a portant component of accelerator des fénues in monitors and overall redundancies in correctors

and evaluf':ltlon. The quest|o_n of effectlvenes_s VS econfmlﬁ)éve been identified and corrected, will be described.
however, is not always easily tractable. This is especially

true in cases where betatron function magnitude and phase
advance do not have smooth or periodic dependencies on 2 NOMENCLATURE

the physical distance. In this report a program is presenteg} simplicity we limit our discussion to the x-plane only
using linear algebraic techniques to address this problefih the usual index assignments of 1, 2, 6 for position,

A systematic recipe is given, supported with quantitativgngie and momentum. Generalization is straightforward.
criteria, for arriving at an orbit correction system design
with the optimal balance between performance and ecog- : .
. . . .1 Error-to-monitor response matrix 3
omy. The orbit referred to in this context can be general-
ized to include angle, path length, orbit effects on thEhe error-to-monitor response matrix®M summarizes
optical transfer matrix, and simultaneous effects on multihe orbit disturbance at any monitor caused by any physi-
ple pass orbits. cal error which can affect any of the beam orbit coordi-

nates:

1 INTRODUCTION o = ZM”EM. E
In designing orbit correction systems simple rules such as .

phase advance counting are often followed in placinghere Qis the orbit disturbance at the i-th monitor and E
monitors and correctors. While such rules work well witithe magnitude of the j-th physical error, including injec-
smooth, periodic betatron functions and phase advanctien errors, magnetic field errors, misalignments etc.. The
one may encounter difficulty using them in areas whemdements of MM consist of optical transfer elements M
large betatron variations contribute significantly tdVl;,, and Mg from the sources of error to the monitors. In
response matrix elements compared to pure phase contdnstructing NiM for subsequent analysis, one must iden-
butions, or in areas where smooth periodicity is absettify all the major potential sources of errors that the entire
When these problems are present, it is difficult to arrive atbit correction system is designed to correct. This usu-
aglobal and quantitativelesign criterion for the orbit cor- ally includes quadrupole offsets, large dipole field errors,
rection system based on phase advance counting. Heresuspected misalignments etc.. Any estimate on the rela-
present a self consistent program based on response méitré magnitude of such errors can be incorporated into
ces. It ensures thglobally consistenapplication of the MEM by properly scaling individual columns.

same quantitative criteria for observability, controllability

and non-degeneracy defined by the designer, independgrst Error-to-all-location response matrix ¥

of the smoothness of the local lattice. . . .
The error-to-all-location response matrixflsummarizes

The program starts by evaluating the observability of theie orbit disturbance at all representative locations caused
monitor system to ensure knowledge of the orbit to thgy the physical errors described above. These locations,
same level everywhere. An algorithm for adding monitorgot tied to any physical elements, should effect a dense

is introduced in case of deficiency in observability. Theoverage of the entire beam line and will be collectively
redundancy of the monitor system is then evaluated and @hnoted by a set,C

algorithm for monitor minimization introduced to ensure
that a minimally necessary set is obtained that would not
place unjustified demands on the corrector system. We
follow by evaluating the controllability of the correctoryhere Qis the orbit disturbance at the i-th location.
system to ensure control of the orbit to the same level
everywlhere. An alggr_ithm fpr adding co_r.rectors is intr02.3 Corrector-montior response matrixcM
duced in case of deficiency in controllability. The overall
redundancy of the corrector system is then evaluated ah@e corrector-monitor response matriX”¥summarizes
an algorithm for corrector minimization introduced tothe orbit disturbance at any monitor by any corrector.
ensure that a minimally necessary set is obtained that o = ZM”CM. K,

]

— EA
O = Y M=+ E
J

* Work supported by the U.S. Department of Energy, contract
DE-AC05-84ER40150. where K is the magnitude of the j-th corrector kick.
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2.4 All-location-to-montior response matrix where we have also defined the fractional components

_ , " PXy and &y of X inside and outside the subspace
The all-location-to-monitor response matrix'Msumma- spanned by M.

rizes the orbit disturbance at any monitor caused by coor-
dinate error at any representative location in the get C 5 9 gram determinant and orthogonality

_ AM ) ) ) )
O = JzMiJ' Kj The Gram determinantygof a matrix M is given by

T . .
. . . . Gy =Det(M <M row dim. > column dim.
where K is the magnitude of the error at the j-th location. M ( )
= Det(M- MT) column dim. > row dim.
2.5 Corrector-to-all-location response matrix _ M 2
G = H_| Sig
J

The corrector-to-all-location response matriX*Msum-

marizes the orbit disturbance at all representative Iocatlo\pv%ere M is the -th singular value of M. The normalized
caused by any corrector. ]

Gram determinarg, is defined as
- CA _ _
O = MK Gm = Gy/Ly . 0<Gy<1l
J

Ly = |_| 5 Miizg row dim. > column dim.
2.6 Singular value decomposition (SVD) i

. . . . 2 . .
SVD is the process of decomposing a matrix M into the = 1] 5'\4”- B column dim. > row dim.
product of three matrices U, W and V: b

T
M=U W-V 3 THE OPTIMIZATION PROGRAM

U and V afford useful physical interpretation when appliegh the following we outline the entire optimization pro-
to response matrices. The rows of V represents orthongfam using the quantitative measures defined in the previ-
mal combinations of the “actuators”, either errors or colgys section. It should be noted that the general philosophy
rectors, whose effects are magnified by the diagongf accelerator design demands the following numerology
elements of W before being realized as orthonormal orh§ hold: Ng>N,, >N, , where N, Ny, and N are the
patterns represented by the rows of U. SVD allows us tgtal number of potential errors, monitors and correctors
decompose the response matrix into decoupled cauggspectively. Thus the matrix N always has more col-
effect relations between linear combinations of the actugmns than rows and the opposite is true &MV One can
tors and monitors, with the magnification factors constart the program with an arbitrary initial monitor-correc-
tained in W.  The diagonal elements of W are callegbr configuration and iterate until all criteria are satisfied.
singular values and the condition numbe} of Mis tha set of candidate locations for monitors and correctors
ratio between the largest and the smallest singular valueshould be identified, for example at all quadrupole loca-
tions, in case additional monitors or correctors are

2.7 Null space vectors demanded in an iteration. These sets will be denojgd C
The null space vectorsyEfor a given matrix M are the and G in the following. We will also denote by,CGhe
vectors which are projected into 0 by M: set of all representative locations used for establishing
M+E. =0 E =1 MEA, Various cutoff numbers will be used for terminating
Mo Bl = iterations.  Their physical meaning will be briefly
Notice we choose to have al,& normalized. described, but not quantitatively elaborated.
2.8 Pseudoinverse and projected components 3.1 Eliminating monitor deficiency
The pseudoinverse Mf a given matrix M is defined as 1. Determine cutoff number R in units of orbit displace-
Mt = (MT- M)—l, mT ment, a measure of the error-induced orbit anywhere that

is undetectable by existing monitors.

The pseudoinverse is related to the projection operath Obtain null space vectors,e of BM. calculate
My, which decomposes any vector X into componeMs XA EA M '
= M« Eyem for all Eyem .

and XV respectively inside and outside the subspac

spanned by the column vectors of M, through 3. If any element of any"\/is greater than R, identify
My =MsMT, index j of the largest such element if\.V
vM = My e X P'>\<A = |xM/ x| 4. Add to monitor list the candidate monitor igy €losest
" » " to the location represented by the j-th location jn C
X =X=Mye*X, QM=\7< /71X

5. lterate steps 2-4 until all elements éf afe less than R.
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6. Perform SVD on M, obtain the row vector v of V 3. Perform SVD on MV, if the condition numbeNi/l"cdM is
with the smallest singular value, calculatd = MFAe v .greater than R, or the normalized Gram determi-
7. lterate steps 3, 4 and 6 until all elements’fxe less nantséMCM is less than S to the-th power, continue.

than R. 4. Identify the row vector v of V with the smallest singular

o _ value and the index j of the largest element in v.
3.2 Minimizing monitor redundancy ) i ) i o
) . 5. If the j-th corrector is not forbidden, remove it. If itis,
1. Determine cutoff numbers R and Swith0 <R < 1,0 < %move the largest non-forbidden corrector in v.

< 1. R is a measure of the extent to which all error- ) u max _ ) )
. . . . . . 6. Monitor Q 'y andK; defined in the previous pro-
induced orbits contribute to a single monitor, and S is a M , )
. . gram relative to their respective cutoff numbers to ensure
measure of the orthogonality of the monitors.
svd

. ; _ freedom from deficiency.

2. Calculate all Iy, fractional componentQ:\;'EM , with; X y ) _ .
the vector representing unit orbit peak at the i-th monitor.7' lterate steps 2-6 unthCM is less than R @WM IS
3. Eliminate all monitors whose correspondin;t%i;‘EM greater than S to thec\th power.

exceed (1-R). .
. L 3.5 Alternative to corrector redundancy
4. Calculate the normalized Gram determmaB;;r‘EM ,

continue if it is less than S to the,Ath power. A more advantageogs alternat_ive_ to the last corrector

5. Perform SVD on MM, obtain the row vector u of U rEdUCt'Qn program aimed at el|m|nat|r!g excessive Orb.'t
. . ’ ) . correction caused by near-degeneracy is to introduce “vir-

with the smallest singular value, identify the largest COMial monitors” which automatically keep the correction

ponent of u and its index i. result confined and free of singular behavior. The algo-
6. Eliminate the i-th monitor. rithm for adding virtual monitors is discussed in [1].

7. Iterate steps 4-6 untKTSMEM is greater than Sto the N

th power. 4 APPLICATION TO CEBAF ACCELERATOR

3.3 Eliminating corrector deficiency 4.1 Monitor deficiency

1. Determine cutoff number R and S, 0 <R <1. R med&he program 3.1 for eliminating monitor deficiency was
sures the fraction of an error-induced orbit pattern uncoapplied to the existing set of BPM's in CEBAF. It was dis-

rectable by the correctors. S measures corrector limits. cqt\;]e:ﬁd that a![[ eIe.mﬁ:\tsAE\arteéNitthint.a Iirlgit of 3 mtr;:,th
2. Perform SVD on ¥M, obtain all row vectors u of U. - [1€ EXCEPLON [N the ast Exiraction kegion with the
elements of Y exceeding 15 mm for all beam passes,

. u;

3. Calculate all ly fractional compoTnentQMCM » and all caysing orbit excursions undetectable from available data.
Nnm pseudo-inverted vectots, = MM, u; withthe i-th  This is supported by simulation and operation data. It was
row vector of U. Identify the maximum™®  of eah . determined that additional BPM's be installed according

4. Continue if anyQui is greater than R, or aqr{}ax .to this program as the potential orbit error can cause emit-
. McM )

. . _ ance distortion on the order of 10% due to suspected
greater than S. In the former case identify theith the higher order field in nearby dipoles.
IargestQL,:/‘ICM , calculater; =u;—N_cyeu, . In the latter
identify the y with the IargesKima andsgf =u, . 4.2 Corrector redundancy

5. Calculate the normalized inner product between Ti and ., rrector reduction program at CEBAF was performed
all the column vectors of fM. Identify index j with the pased on the program 3.4 above. There have been opera-
largest inner product. tion and simulation evidences that an overly dense cover-
6. Add the candidate corrector ig Closest to the location @ge of the beam line by correctors led to excessive
represented by the j-th location in C correction in the lower arcs and poor reproducibility in the
7. Iterate steps 2-6 until éﬂluicm are less than R and ﬁPreaders and recombiners. _66 correctors were _re_moved
max M From a total of about 860 while the corrector deficiency
Ki™" are less than S. criteria were monitored at each step to prevent over-reduc-
o tion. The machine has been operating with this reduced
3.4 Minimizing corrector redundancy corrector set and no compromise in orbit correctability has
1. Determine cutoff numbers R and S, R measures theen observed.
evenness in the corrector effect distribution among moni-

tors. S with 0 < S < 1 measures the orthogonality of the 5 REFERENCES
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