
WAVEGUIDE STUB-LINE TUNING OF RF CAVITIES WITH HEAVY
BEAM LOADING **

P. Krejcik,
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

                                                          
* *Work supported by Department of Energy Contract DE-AC03-76SF00515.

Abstract

A method is proposed for using adjustable, waveguide
stub-line tuners to match the load impedance of the cavity
plus beam to the power source, without the need to detune
the cavity. Adjustable stub-line tuners are shown to be
able to completely match the resistive and reactive parts of
the load impedance to a generator under all conditions of
beam loading, ensuring optimum power transfer between
generator and cavity. This technique may have advantages
in high-current storage rings such as the SLC damping
rings and the new PEP II storage rings. The coupled-
bunch instability driven by the fundamental mode of the
cavity is re-appraised in this coupling scheme in which the
cavity is no longer detuned. The consequences of this
matching scheme are also considered for the beam loading
stability limit.

1  INTRODUCTION

The beam in an RF cavity is seen by the generator (klys-
tron) as a complex load impedance. The reactive compo-
nent of this beam load impedance is determined by the
synchronous phase angle, fS, of the beam and conse-
quently held fixed by other parameters of the accelerator.
In high-current storage rings it is necessary to fully match
this complex load to the generator to ensure efficient
transfer of power.

In a typical storage ring cavity this is done in two steps
by matching the real, or resistive, part with the coupling
ratio at the cavity port and secondly detuning the cavity to
match the imaginary, or real, part of the load. The resis-
tive component of the match is not typically adjustable
and is fixed by the geometry of the cavity coupler. In such
cases the matching is only optimized for one design beam
intensity. The reactive matching through cavity detuning
can be achieved with a mechanical tuner and adjusted
according to the average beam current.

The impedance seen by the generator determines the
power transfer efficiency to the beam, but the impedance
seen by the beam determines the stability of the beam. In
high-current, multiple bunch "factory" machines the cost
and feasibility of feedback systems to damp these insta-
bilities must be weighed against the cost of the installed
RF power. Coupled bunch instabilities are driven by the
asymmetric impedance at the betatron sideband frequen-
cies which is a direct consequence of detuning the cav-
ity[1]. The beam loading stability threshold is also low-
ered as the cavity is detuned to obtain efficient matching.

As the cavity impedance angle is increased with the beam
intensity the generator component, VG, of the cavity volt-
age becomes increasingly out of phase with the total cav-
ity voltage, VC, until the Robinson limit is reached where
VG is 180° out of phase to the beam current, IB, and no lon-
gitudinal focusing remains[2,3].

The load matching discussed in this paper utilizes ad-
justable stub lines placed in the waveguide between the
cavity and the klystron. Rather than adjusting the cavity
parameters to match the generator,  the stub lines add an
extra degree of freedom to transform an unmatched load
to its source. Once the new matching conditions have been
established with the stub lines the impedance, seen by the
beam, of the cavity plus the generator is analyzed and the
conditions for beam stability described.

The stub line matching of the load impedance to its
power source does appear to have the advantage of pro-
viding all of the adjustment outside of the cavity vacuum.
Furthermore, the matching for both the resistive and reac-
tive components can be adjusted for any beam intensity.
In the conventional coupling scheme only the reactive
matching is adjustable. The capability to vary the resistive
component of the match becomes more critical for ma-
chines where the synchronous phase is large.

2  THE BEAM AND CAVITY LOAD

The equivalent circuit model of the cavity resonator cou-
pled by a transmission line to a generator such as a klys-
tron, shown in figure 2, has been described in detail by
Wilson [4]. In this model the fundamental mode of the

Figure 1: a. Adjustable stub lines perpendicular to the waveguide be-
tween the cavity and klystron, b. an equivalent alternative using adjust-
able posts in the waveguide.

Figure 2: Equivalent circuit model of klystron, transmission line and
cavity (after Wilson [4]).
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cavity is represented  by a parallel RLC circuit [5]. The

beam current I B = 2I Oe– j(wt+fB ) , where fB =
3p

2
-fS,

can be represented as a load admittance, YB, with real and
imaginary components
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The total current in the cavity, IC, is the vector sum of the
generator and beam currents, ˆ I C = ˆ I G + ˆ I B . The com-
bined impedance contributions from the beam and the
cavity gives a total real and imaginary admittance of
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Matching of the load to the generator for optimum power
transfer is done in two independent steps. To match the
real part of the impedance requires finding bC such that
the admittance in equation (2), when transformed to the
generator side of the transformer, becomes equal to the
characteristic line admittance. This gives

bC = 1+
I B

VC

RshsinfS (3)

In order to match the imaginary part  of the impedance
we find that the beam has introduced a reactive term that
in present designs is compensated by reactive tuning of
the cavity [6, 7]. The cavity has a non-zero imaginary
admittance when tuned away from its resonant frequency,
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The condition for making the total imaginary component
of the impedance, as given in equation (2), zero is

tanfZ =
I B

VC

RL cosfS (6)

3  TRANSMISSION LINE MATCHING

When a mismatch occurs because the load impedance is
not equal to the characteristic impedance of the transmis-
sion line, some of the wave is reflected. The reflection
coefficient is defined as the ratio of the amplitudes of the
forward and backward wave,
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where ZL =
ZL

Z0

, is the normalized load impedance. Su-

perposition of the forward and reflected waves leads to a

standing wave pattern. A quantity that can actually be
measured is the voltage standing wave ratio (VSWR), S,
that is related to the reflection coefficient by

S=
Vmax

Vmin

=
1+ G

1 – G
(8)

The impedance properties of a transmission line can
also be represented graphically on a Smith chart. At the
load, the reflection coefficient will be designated GL, so
that at a distance l from the load

G l( ) = GL e-
2 jbl , b =

2p

l
(9)

Equation (7) may now be rearranged to give the nor-
malized input admittance, located at a distance l from the
load,

YI =
1

ZI

=
1 – G l( )

1+ G l( )
= G + jB (10)

where G  is the normalized input conductance and B  is
the normalized input susceptance. The load admittance as
defined by equation (2) can be represented as a point on
the Smith chart in figure 3, for a given waveguide imped-
ance Zo.

Moving away from the load a distance l toward the
generator is equivalent to a clockwise rotation of a point
on the chart through an angle 2bl at a constant radius,
allowing the transformed resistance and reactance of the
load to simply read off the graph. Adding a length, d, of
shorted line which is terminated in zero resistance has the
effect of adding an admittance

YS =
YS

G0

= 0+
j

tanbd
(11)

which is equivalent to moving along a circular contour of
constant conductance on the Smith chart. In the next sec-
tion we will use this graphical technique to illustrate the
use of stub lines for matching a complex load impedance,
like a beam loaded cavity, to a generator. Note that a
matched load impedance is equivalent to a normalized

Figure 3: Smith chart representation of the reflection coefficient from a
load with mismatched admittance at point 1. A length of waveguide, d,
transforms it on a circle to point 2 where a stub of length d1 transforms it
along a line of constant conductance to a match at 3.
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resistance of 1 and zero reactance, corresponding to a
point at the origin of the Smith chart.

3.1 Single stub matching

The principle of matching with a single stub lies in
choosing the length, d1, of the stub and its distance, d,
from the load such that the reflected wave from the stub
just cancels the reflected wave from the load, as shown in
figure 4a. The procedure for choosing d and d1 was shown
graphically in figure 3. Alternatively, if the VSWR from
the load is measured before the addition of the stub line
the values for d and d1  can be determined from S,

cotbd1 = ±
S– 1

S
, tanbdm = ± S

(12)
where dm is now the distance of the stub line measured
toward the generator from the position of the voltage
maximum. The positive square root sign is used for
0<dm<l/4 and is negative for l/4< dm<l/2.

3.1 Double stub matching

It is usually not possible to vary the distance of the stub
line from the load to compensate for load impedance
changes. This difficulty can be overcome by using two
adjustable stub lines of length d1 and d2 as the two vari-
ables, at an arbitrary distance from the load but separated
by a distance d ¹l/ 2 from each other, as shown in figure
4b. The distance of the first stub from the load is com-
pletely arbitrary as the transformed load impedance at that
location is now taken as the new load impedance to be
matched.

The matching procedure is shown graphically in figure
5, where point 1 represents the normalized load admit-
tance at the junction of the stub d2. The stub line of length
d2 adds susceptance only, so the locus moves to point 2
along a contour of constant G = GL . The length of trans-

mission line d be-
tween the two stubs
transforms point 2
through an angle
2bd where it inter-
cepts the circle
G = 1 at point 3.
The stub line d1 adds
susceptance to move
the point along the
contour G = 1 until
it meets the origin at
point 4.

As with the single stub, the matching conditions can be
expressed in terms of the measured VSWR, so that in the
example for d=l/4:

cotbd1 = ± S– 1, cotbd2 = ±
S – 1
S

(13)

If the range of load impedances to be matched is unusu-
ally large, or if it is physically difficult to make d small
enough to accommodate the range of impedances, then a
third adjustable stub can be added. Adding a third degree
of freedom in a triple stub matching arrangement is suffi-
cient to ensure all load conditions can be matched.

4  BEAM STABILITY

At first sight it might appear that not detuning the cavity
would be advantageous for the driving terms of the cou-
pled bunch instability. However, the beam sees both the
cavity and generator impedance in parallel and the gen-
erator now appears as a reactive impedance when trans-
formed through the stub line. In fact, the beam must see
exactly the same reactive impedance component as the
conventionally detuned cavity. The main advantage re-

mains the practical aspect of placing the moveable tuning
element outside of the vacuum system in the waveguide.

Similarly, the Robinson beam loading limit, accord-
ing to

Ymax =
2sinfB

sin 2fZ
, tanfL =

– tanfZ +Y cosfB

1–Y sinfB
(14)

appears to increase when fz=0, as in fig. 6. However, sta-
bility is now lost when VL is 180° out of phase with IB,
even though VG is in phase with VC, so the beam loading
limit is the same as for conventional matching.
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Figure 6: Equivalent circuit (a) with stub line matching and the phasors
(b) including the stub line current. Beam loading limit (right) as a func-
tion of impedance angle and loading angle.

Figure 5: Smith chart representation of
double stub matching.

Figure 4: Single (left) and double stub matching(right).
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