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Abstract

We generalize the existing decoherence theory of a kicked
beam to linearly uncoupled 4D transverse phase space. An-
alytical results for the beam centroid motion as well as
beam emittance (i.e., 1st and 2nd order beam moments) are
given. We formulate the problem in the language of one-
turn map and normal form theory in order to emphasize the
approximations used and facilitate further generalizations.
We will not discuss the chromaticity decoherence factor,
which can be found in the references.

1 BEAM PHASE-SPACE DISTRIBUTION AND
NORMAL FORM OF ONE-TURN MAP

After a stored beam is kicked, the beam phase space dis-
tribution will filament due to nonlinearities. In order to
calculate the beam centroid motion and emittance growth,
we need to know the phase-space distribution of the kicked
bunch. To obtain this time dependent distribution, we em-
ploy the basic rule for transforming a continuous distribu-
tionf from one set of variables~u to another~v = T ~u, which
is:

f~v(~v) = f~u(T −1~v)|JT | (1)

whereJT is the Jacobian of the single-valued transforma-
tion T . This rule will be used repeatedly although in most
cases it will not be mentioned explicitly. Suppose the initial
distribution isρ0(~x) and the effect of a kick is to translate
the equilibrium distribution from〈p〉 = 0 to 〈p〉 = ∆x′

without changing positions, the new phase space distribu-
tion obviously isρ(x, p) = ρ0(x, p − ∆x′).

The n-th turn phase space distributionρn(~x) depends on
the one-turn mapM of the ring, i.e.,ρn(~x) = ρ(M−n~x),
where we have used the fact that the Jacobian of the one-
turn map equals to 1 due to symplecticity. In general,
the mapM could be extremely complicated and numeri-
cal tracking is the only way to proceed, even though such
tracking is very time-consuming. However, for a normal
operating ring, the one-turn map usually has very weak
nonlinearity and the tune is placed away from significant
resonances. Therefore, it is safe to assume that there is an
effective normal form

N = A−1 ◦M ◦A (2)

for the map of a normal operational storage ring. Now the
phase space distribution becomes:

ρn(~x) = ρ(A ◦N−n ◦ A−1~x) (3)

Since the normal form represents a simple rotation in the
normalized phase spaceA−1~x, it is much easier to work

with this normalized phase space. Using action-angle vari-
ables~J ≡ {Jx, φx, Jy, φy}, the n-th turn phase space dis-
tribution reads:

ρ~J( ~J) = ρ~x(A ◦ N−n ~J) (4)

= ρ~x(A{Jx, φx − 2πνxn, Jy, φy − 2πνyn})

In Eq. (4) we only assumed that the single particle mo-
tion can be canonically transformed (via a nonlinear map
A) into a circular phase space motion with amplitude de-
pendent tunesνx andνy. To further simplify the calcula-
tion, we adopt the following major approximations:

• Take only the leading terms in the normal formN ,
i.e., consider only the linear tune-shift-with-amplitude
terms.

• Drop the nonlinear part ofA, i.e., just use the linear
Courant-Synder normalization and the well-known
action-angle variables{J, φ}.

Note that these approximations, especially the last one
when nonlinear part ofA is large, may limit the usefulness
of the result. In the following, we limit our discussion to
the case of linearly uncoupled 4D transverse phase space.

Let us start with a 2D well-damped beam. Due to ra-
diation damping and quantum excitation, the well-known
equilibrium distribution is:

ρ0(x, p) =
1

2πε
e−

1
2ε (γx2+2αxp+βp2) (5)

whereα, β, γ, andε are the Twiss parameters and emit-
tance. Using Eq. (4) and the Courant-Synder normalization

matrixA =
( √

β 0
−α/

√
β 1/

√
β

)
, the action-angle phase

space distribution right after a kick becomes:

ρ(J, φ)

' ρ0

(√
2Jβ cosφ,−

√
2J/β (sinφ + α cosφ) − ∆x′

)
' 1

2πε
e
− 1

2

[
2J/ε+2

√
2J/ε k sin φ+k2

]
(6)

wherek ≡
√

2∆J/ε = β
σ ∆x′ is a dimensionless quantity

that measures the effective kick∆J on the action. For the
n-th turn, one simply shifts the phaseφ by−2π(ν0 +aJ)n,
whereν0 and a are the linear tune and tune-shift-with-
amplitude.

Now we consider the 4D case with negligible linear cou-
pling between thex andy degree of freedom. The total
phase space distribution is a direct product of the distri-
butions in the two 2D subspace. However, there is an ex-
tra tune-shift term contributing to the decoherence process
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which must be taken into account because, in the 4D case,
the tunes reads:

νx = ν0
x + axJx + axyJy + · · ·

νy = ν0
y + axyJx + ayJy + · · · (7)

whereax, axy, anday are the tune-shift-with-amplitude co-
efficients. In summary, the 4D phase space distribution of
a beam kicked to{0,∆x′, 0,∆y′} is:

ρ(Jx, φx, Jy, φy)

' 1
2πεx

e
− 1

2

(
2Jx/εx+2

√
2Jx/εx kx sinΦx+k2

x

)
·

1
2πεy

e
− 1

2

(
2Jy/εy+2

√
2Jy/εy ky sinΦy+k2

y

)
(8)

where all the symbols are subscribed withx andy to indi-
cate the horizontal and vertical planes.Φx ≡ φx−2π(ν0

x +
axJx + axyJy)n and similar shorthand holds forΦy.

2 BEAM CENTROID

Using the phase space distribution of Eq. (8), the centroid
motion is simply given by:

〈x〉 = 〈A{Jx, φx, Jy, φy}〉|x component

' 〈
√

2Jxβx cosφx〉 (9)

〈px〉 = 〈A{Jx, φx, Jy, φy}〉|px component

' −〈
√

2Jxγx cos(φx − π

2
+ arctanαx)〉

where〈· · ·〉 means average over phase space distribution.
These first moments rely on the integral:

〈
√

2Jx cos(φx + φ0)〉 =
∫ ∞

0

d Jxd Jy

∫ 2π

0

dφxdφy

ρ(Jx, φx, Jy, φy)
√

2Jx cos(φx+φ0)
= kx

√
εx Ā sin(2πν0

xn + ∆φ̄ + φ0) (10)

where

Ā ≡ 1
1 + θ2

x

e
− k2

x
2

θ2
x

1+θ2
x · 1√

1 + θ2
xy

e
−

k2
y
2

θ2
xy

1+θ2
xy

∆φ̄ ≡ k2
x

2
θx

1 + θ2
x

+ 2 arctanθx +

k2
y

2
θxy

1 + θ2
xy

+ arctanθxy (11)

andθx ≡ 2πaxεxn, θxy ≡ 2πaxyεyn.
In summary, we obtained the centroid motion of a kicked

beam in uncoupled 4D transverse phase space as:

〈x〉 ' kxσx Ā sin(2πν0
xn + ∆φ̄) (12)

〈px〉 ' kxσx′Ā cos(2πν0
xn + ∆φ̄ + arctanαx)

Obviously, similar results hold for〈y〉 and〈py〉. Compar-
ing this to the 2D result in Ref. [1, 5], there are extra contri-
butions to the decoherence factorĀ and phase shift∆φ̄ due
to the new transverse degree of freedom and nonlinear cou-
pling, even when the beam was kicked in one plane only.
These modifications are particularly important when con-
sidering beam decoherence in the vertical plane, because
the horizontal emittance is usually much larger than the
vertical one. The effect of non-zeroα is also included in
Eq. (12) explicitly. For kicks other than the one we have
used, the phase and amplitude need to be adjusted to sat-
isfy the initial condition as for a single particle.

3 BEAM SIZE AND EMITTANCE

For many applications, it would be important to know the
rms emittance and other second order beam moments as the
beam decoheres. The calculation of these moments rely on
the following two integrals:

〈Jx〉 =
1

εxεy
e−

k2
x+k2

y
2

∫ ∞

0

dJxJxe−
Jx
εx I0(

√
2Jx

εx
kx)

∫ ∞

0

dJye
−Jy

εy I0(

√
2Jy

εy
ky)

= εx(1 +
1
2
k2

x) (13)

and

〈Jx cos(2φx + φ0)〉

= − 1
εxεy

e−
k2

x+k2
y

2

∫ ∞

0

dJy e
−Jy

εy I0(

√
2Jy

εy
ky)

∫ ∞

0

dJx Jx e−
Jx
εx I2(

√
2Jx

εx
kx) cos[4πνxn + φ0]

= −εx
k2

x

2
Ã cos(4πν0

xn + ∆φ̃ + φ0) (14)

whereI0 andI2 are modified Bessel functions,

Ã ≡ 1
[1 + (2θx)2]3/2

e
− k2

x
2

(2θx)2

1+(2θx)2 ·

1√
1 + (2θxy)2

e
−

k2
y
2

(2θxy)2

1+(2θxy)2

∆φ̃ ≡ k2
x

2
2θx

1 + (2θx)2
+ 3 arctan2θx +

k2
y

2
2θxy

1 + (2θxy)2
+ arctan 2θxy (15)
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Using Eqs. (13)&(14) we obtain:

〈x2〉 (16)

= βx (〈Jx〉 + 〈Jx cos 2φx〉)

= σ2
x

[
1 +

1
2
k2

x − 1
2
k2

xÃ cos(4πν0
xn + ∆φ̃)

]

〈p2
x〉 (17)

= γx (〈Jx〉 − 〈Jx cos(2φx + 2 arctanαx)〉)

= σ2
px

[
1 +

1
2
k2

x +

1
2
k2

xÃ cos(4πν0
xn + ∆φ̃ + 2 arctanαx)

]

〈xpx〉 (18)

= −αx〈Jx〉 −
√

βxγx 〈Jx cos(2φ − π

2
+ arctanα)〉

= −αxεx(1 +
k2

x

2
) +

εx

2

√
βxγxk2

xÃ sin(4πν0
xn + ∆φ̃ + arctanα)

From the first and second order moments, it is easy to get
the rms values, such as

σrms
x (n)

≡
√
〈x2〉 − 〈x〉2

= σx

{
1 +

k2
x

2
(1 − Ā2) +

k2
x

2
[Ā2 cos(4πν0

xn + 2∆φ̄)

−Ã cos(4πν0
xn + ∆φ̃)]

}− 1
2

(19)

The rms emittance becomes:

εrms
x (n)

≡
√〈

(x − x̄)2
〉〈

(px − p̄x)2
〉
− 〈(x − x̄) (px − p̄x)〉2

= εx

{
1 + k2

x(1 − Ā2) +
k4

x

4

[
1 − 2Ā2 − Ã2+

2Ā2Ã cos(2∆φ̄− ∆φ̃)
]}− 1

2
(20)

' εx

√
1 + 2k2

xθ2
x + k2

x(1 + k2
y)θ2

xy + O(θ4)

where kx ≡
√

2∆Jx

εx
and ky ≡

√
2∆Jy

εy
. Since both

Ā and Ã decay to 0 as the time increases, it is obvious
that εrms

x → εx(1 + 1
2k2

x) = 〈Jx〉. Note that this is the
limit without radiation damping. The beam will finally be
damped into the equilibrium state of emittanceεx. The rms
emittance of Eq. (20) has a very interesting property: it
does not depend on the linear tunesν0

x andν0
y . The Taylor

expended expression is good for a relatively small number
of turns after the kick, whereθ ∝ n is small. By switching
the subscripts, all expressions apply to the vertical plane as
well.
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