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Abstract with this normalized phase space. Using action-angle vari-
lesJ = {J, ¢z, Jy, ¢y}, the n-th turn phase space dis-

We generalize the existing decoherence theory of a kick .
g 2 asting y ! bution reads:

beam to linearly uncoupled 4D transverse phase space. AR
alytical results for the beam centroid motion as well as , (J) = pz(AoN~"J) (4)
beam emittance (i.e., 1st and 2nd order beam moments) are — (AT, b — 270am, Ty, by — 2700}
given. We formulate the problem in the language of one- Pz wrE Ty Ty Y

turn map and normal form theory in order to emphasize the In Eq. (4) we only assumed that the single particle mo-
approximations used and facilitate further generalizationgion can be canonically transformed (via a nonlinear map
We will not discuss the chromaticity decoherence factor4) into a circular phase space motion with amplitude de-
which can be found in the references. pendent tunes, andv,. To further simplify the calcula-

tion, we adopt the following major approximations:
1 BEAM PHASE-SPACE DISTRIBUTION AND . .
NORMAL FORM OF ONE-TURN MAP . Take only the Ieadmg_ terms in the_ normal fom_ﬁ,
i.e., consider only the linear tune-shift-with-amplitude

After a stored beam is kicked, the beam phase space dis- terms.
tribution will filament due to nonlinearities. In order to
calculate the beam centroid motion and emittance growth, ®
we need to know the phase-space distribution of the kicked
bunch. To obtain this time dependent distribution, we em-
ploy the basic rule for transforming a continuous distribuNote that these approximations, especially the last one
tion f from one set of variablesto anothew’ = 7w, which  when nonlinear part ofl is large, may limit the usefulness
is: of the result. In the following, we limit our discussion to

f5(0) = fa(T'0)|Jz]| (1)  the case of linearly uncoupled 4D transverse phase space.

where.J7 is the Jacobian of the single-valued transforma- L€t us start with a 2D well-damped beam. Due to ra-
tion 7. This rule will be used repeatedly although in mosgliation damping and quantum excitation, the well-known
cases it will not be mentioned explicitly. Suppose the initia®duilibrium distribution is:
distribution ispy(Z) and the effect of a kick is to translate 1 L )

the equilibrium distribution fromlp) = 0 to (p) = Az’ po(w,p) = 5—e 2 OF T HOr) (5)

2me
without changing positions, the new phase space distribu- , ,
tion obviously isp(, p) = po(x, p — Az’). wherecq, 3, v, ande are the Twiss parameters and emit-

The n-th turn phase space distributigr(Z) depends on tance. Using Eq. (4) and the Courant-Synder normalization
the one-turn map\t of the ring, i.e.,p,,(Z) = p(M™™F), matrix A = ( v 0 >,the action-angle phase
where we have used the fact that the Jacobian of the one- o\ @ \/B 1/v/B 4 .
turn map equals to 1 due to symplecticity. In (_Jjenerafp"’me distribution right after a kick becomes:
the mapM could be extremely complicated and numeri- o(J, 9)
cal tracking is the only way to proceed, even though such

tracking is very time-consuming. However, for a normal~ P0 (\/ 2JBcos ¢, —\/2J/f (sin ¢ + accos ) — Axl)
operating ring, the one-turn map usually has very weak 1 7%[21/&2\/%1@ Sin¢+k2]

Drop the nonlinear part o, i.e., just use the linear
Courant-Synder normalization and the well-known
action-angle variable§/, ¢}.

nonlinearity and the tune is placed away from significant™ 5 ¢ (6)
resonances. Therefore, it is safe to assume that there is an
effective normal form wherek = /2AJ/e = §Am’ is a dimensionless quantity
that measures the effective kickJ on the action. For the
N=A"1oMoA (2) n-thturn, one simply shifts the phagéy —27 (v +aJ)n,
. ) wherevy and a are the linear tune and tune-shift-with-
for the map of a normal operational storage ring. Now thgmplitude
phase space distribution becomes: Now we consider the 4D case with negligible linear cou-
pn(@) = p(Ao N~ 0 A~17) 3) pling between the: andy degree of freedom. The total

phase space distribution is a direct product of the distri-
Since the normal form represents a simple rotation in thisutions in the two 2D subspace. However, there is an ex-
normalized phase spacé'Z, it is much easier to work tra tune-shift term contributing to the decoherence process
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which must be taken into account because, in the 4D cag@bviously, similar results hold fofy) and(p,). Compar-

the tunes reads:

0+ agd, + gy Sy + -
l/g—l-anyx +aydy+--- (7

Vg =

Vy -

ing this to the 2D resultin Ref. [1, 5], there are extra contri-
butions to the decoherence factband phase shifh¢ due

to the new transverse degree of freedom and nonlinear cou-
pling, even when the beam was kicked in one plane only.
These modifications are particularly important when con-

wherea,, a,,,, anda, are the tune-shift-with-amplitude co- sidering beam decoherence in the vertical plane, because
efficients. In summary, the 4D phase space distribution @he horizontal emittance is usually much larger than the

a beam kicked t§0, Ax’, 0, Ay'} is:

p(Jwv¢wv Yo ¢y>

1 . 2(2] [e€x+2:/205 )€z ko sm<I>L+kz)
2me,

1 6_% (2‘]1//51/""2 V 2Jy /ey ky sin (I>y+k;2/) (8)

2me,

12

where all the symbols are subscribed witlandy to indi-
cate the horizontal and vertical plan@s, = ¢, — 27 (12 +
agJz + azyJy)n and similar shorthand holds fdr, .

2 BEAM CENTROID

vertical one. The effect of non-zerois also included in

Eq. (12) explicitly. For kicks other than the one we have
used, the phase and amplitude need to be adjusted to sat-
isfy the initial condition as for a single particle.

3 BEAM SIZE AND EMITTANCE

For many applications, it would be important to know the
rms emittance and other second order beam moments as the
beam decoheres. The calculation of these moments rely on
the following two integrals:

Using the phase space distribution of Eq. (8), the centroid

oL v i by: k2+k2 Iy
motion is simply given by: (1) = / s e*?lo( /2 k)
emey
<$> = <A{Jw7 ¢$7 Jy’ ¢y}>|x component _Jy 2Jy
~  (\/2J.0 cos dy) 9) /0 dJye v Io( Z ky)
1
= e(+sk 13
(D) = AA{Jar 2. Ty 03 1), component 1+ 5k) (13)
~ —(\/2Tos cos(bs — = + arctan ay))
2 and
where (- - -) means average over phase space distribution.
These first moments rely on the integral: (Jz cos(2¢, + ¢o))
27 1 _ k2+k§ > 2J
(V2 cos( + o)) /dJ dJ, d@cdqby = T /O dJye v % I . — ky)
oo
B p( Jzs O yvfby V J Ccos ¢x+¢o / dJ, J, 6_;]7 1.2( J, km) COS[47TI/wn+ ¢0]
= kyv/€x Asin(2m02n + Ad + ¢o) (10) 0 , €z
k2 - -
where = —efocos(élwygn + A+ ¢o) (14)
1 k2 62 1 72, 93“,
A = g e 2w .- 2tel, wherel, andl,; are modified Bessel functions,
+
x \/ 1402,
K20, i 1 by (Gt
— = 1+ 20y .
Ay = 3 T+ o2 + 2arctanf, + = I+ (2996)2]3/2
k2 9 1 _ k(2602
Y Yy 2 14 (2044)2
— + arctan (12) — ¢ +(202y)
2 1+63, v 1+ (264,)?
andfy, = 2magean, Ooy = 2magycyn. AQE = k—?”i%w + 3arctan 20, +
In summary, we obtained the centroid motion of a kicked 2 14 (20,)? ’
beam in uncoupled 4D transverse phase space as: k2 20,
z Y + arctan 20, (15)

K
|

ko, Asin(2m2n + Ag)
kyop Acos(2mv2n + A¢ + arctan o)

(12)
2

12
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Using Egs. (13)&(14) we obtain: 4 ACKNOWLEDGEMENTS
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= —p(Jg) — / BVz (Jz cos(2¢ — g + arctan «v))
2

k
= —age(1+ 7””) +

%w V Buve k2 Asin(4m2n + Ag + arctan o)

From the first and second order moments, it is easy to get
the rms values, such as

o (n)
= /%) — (o

k2 - k2 - -
=0, {1 + Er(l — A?) + 7‘”[/12 cos(4min + 2A¢)

1
2

— A cos(4mvdn + qu)]} (19)

The rms emittance becomes:

()
= J(@=22) (e~ 5) = (2= D - )
:em{1+k§(1—A2)+% [1—2A2—A2+

M

2A2Acoqué-A$ﬂ}_ (20)

= e [1+ 28202 + K21+ K2)62, + O(67)

wherek, = /222 andk, = \/22%. Since both
@ y

A and A decay to 0 as the time increases, it is obvious
that ™ — ¢,(1 + $k2) = (J,). Note that this is the
limit without radiation damping. The beam will finally be
damped into the equilibrium state of emittange The rms
emittance of Eq. (20) has a very interesting property: it
does not depend on the linear tungsandv)). The Taylor
expended expression is good for a relatively small number
of turns after the kick, wheré « n is small. By switching

the subscripts, all expressions apply to the vertical plane as
well.
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