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Abstract

An efficient (accurate and fast) numerical framework is in-
troduced for computing the (incoherent) betatron normal
mode Laslett coefficients for beam-liner with completely
general transverse geometry.

1 INTRODUCTION

In previous papers[1][2] we introduced a general frame-
work for computing the normal mode Laslett coefficients
for beam liners in terms of the associated complex (2D)
potential. In this communication we extend the previous
result to the most general case where the (transverse) liner
geometry is so complicated that the (2D) potential cannot
be computed in analytic form. The extension is based on
(a suitable generalization of) Cauchy integral formula for
computing the Lasletts without using derivatives, and an
application of Monte-Carlo Wiener-Ito stochastic integra-
tion for solving Poisson equation.

2 NORMAL MODE LASLETT COEFFICIENTS

The betatron normal mode incoherent1 Laslett coefficients
for beam liners possibly surrounded by a co-axial magnetic
yoke can be conveniently computed from an auxiliary com-
plex potentialΨ̄:[1][2]

φ(im.) − β0A
(im.)
z = 2Λ Re Ψ̄(z̄, z̄b, z̄

∗
b ), (1)

as:
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In (1) z̄ = L−1(x+ iy) andz̄b = L−1(xb + iyb) denote the
(complex, scaled) field-point and source-point transverse
positions, z̄eq. = L−1(xeq. + iyeq.) is the beam center
of charge (complex, scaled) equilibrium position,L is a
problem-dependent scaling length (e.g., the pipe diameter),
andφ(im.), A(im.)

z are the electric and magneticimage po-
tentials, which are obtained by subctracting from the full
potentials the free-space terms, and dots indicate derivation
w.r.t. the argument.[2]

Unfortunately, Eq. (2) seems useless whenever explicit
(analytic) solutions of Laplace equation are not available.
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1For a strictly relativistic (β0 = 1) beam, Eq. (2) also gives the co-
herent betatron normal mode Laslett coefficients in the non-penetrating
magnetic-field regime.[2]

3 THE SCHWARTZ FORMULA

Whenever only anumericalsolution for the (real valued)
potentialφ is possibleat a discrete set of points, the Laslett
coefficients canstill be efficiently computed using (2) by
numerical evaluation of Schwartz formulas[3]2:

¨̄ψ(z0) =
2
π

∫ 2π

0

1
(z − z0)2

φ[Re(z), Im(z)] dθ (3)

wherez = z0+Reiθ is any circle embracingz0, andf(z) is
analytic within and on the aforementioned circle. Comput-
ing the Lasletts in terms ofintegralsinstead ofderivatives
of Ψ̄ is indeed nice, since, loosely speaking, for the same
prescribed accuracy, this requires knowledge ofmuch fewer
valuesof the numerically evaluated potential. However, in
order to use (3), one needs to know the potential at a suit-
able number of pointson a circle, whereasmostavailable
numerical methods yield values ofφ arranged onnoncir-
cular mesh grids. This suggests resorting to a numerical
algorithm whichdoes notrely to anyprior meshing to find
a numerical solution forφ.

4 POTENTIALS FROM WIENER INTEGRALS

The connection among Wiener processes, functional inte-
grals and Poisson’s equation is well known in probability
theory.[4] Accordingly, the solution of the Dirichlet prob-
lem: { ∇2

t Φ(x, y) = −g(x, y), (x, y) ∈ D,
Φ(x, y) = 0, (x, y) ∈ ∂D. (4)

can be written[4]3:

Φ(x, y) = E

[∫ τ

0

g [wx(t), wy(t)] dt
]
, (5)

whereE[·] represents anexpectation valuewith respect to
the probability measure associated to the Wiener processes
(random walks)(wx, wy) starting at(x, y) at timet = 0,
and (first) crossing the boundary∂D at t = τ .

Monte Carlo Implementation

The expectation value in (5) is recognized to be a Wiener
Integral, which can be computed using Monte Carlo

2Schwartz formulas can be derived from Cauchy integral theorem,
by exploiting the well known fact that the analytic complex potential is
uniquely determined, up to an irrelevant constant, from its real part alone.

3Equation (4) can be extended to the case whereg(x, y) is a line source
by a suitable limiting process.
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methods.[5] Accordingly, we introduce a piecewise-linear,
∆−time-step discretizedEuler approximation[6] for the
Wiener processes involved:4

{
wx(tk+1) = wx(tk) +

√
2 δx , wx(0) = x,

wy(tk+1) = wy(tk) +
√

2 δy , wy(0) = y,
(6)

where tk = k∆, andδx, δy are independent gaussian ran-
dom variables with moments:

E(δx) = E(δy) = 0 , E[(δx)2] = E[(δy)2] = ∆. (7)

A random walk is created, using (6),(7), and evolved until,
at t = tQ, it has (first) gone beyond∂D, viz.:

(wx(tQ), wy(tQ)) /∈ D,
(wx(tk), wy(tk)) ∈ D, 0 ≤ k < Q. (8)

The exit timeτ is computed from:

τ−tQ−1

∆
=

=
{

[xe−wx(tQ−1)]2+[ye−wy(tQ−1)]2

[wx(tQ)−wx(tQ−1)]2+[wy(tQ)−wy(tQ−1)]2

}
−1/2

(9)
where the coordinates of theexit point (xe, ye) are the
(only) solution inxe ∈ [min{wx(tQ−1), wx(tQ)},max
{wx(tQ−1), wx(tQ)}] of the system between the (rectilin-
ear) random walk betweentQ−1 andtQ:

ye−wy(tQ−1)=
wy(tQ)−wy(tQ−1)
wx(tQ)−wx(tQ−1)

[xe−wx(tQ−1)],

(10)
and the equation describing (locally) theD−domain
boundary curve,ye = f(xe). For each realization (labeled
by a superfixj) of the random path we can compute the
random variable:

φ(j)(x, y) = ∆
Qj−1∑
k=0

g
[
w(j)

x (tk), w(j)
y (tk)

]
+

+ (τ (j) − tQj−1) g
[
x(j)

e , y(j)
e

]
, (11)

and the associated first and second order moments
µ1(M,∆) andµ2(M,∆) whereM is the total number of
paths.

The potential in (5) can be accordingly evaluated as a
double limit:

Φ(x, y) = lim
∆−→0

lim
M−→∞

µ1(M,∆). (12)

EstimatingΦ(x, y) by µ1(M,∆) will produce, for any fi-
nite ∆ andM , both i) a systematic errorεsys due to dis-
cretization, for which:[6]

εsys(∆) ∼ O(∆), (13)

4In the following we refer to Wiener processes with diffusion coeffi-
cientD = 1, and use a dimensionless time variable.

andii) a statistical error,εstat which in view of the central
limit theorem is asymptotically gaussian, with zero average
and r.m.s deviation:[6]

εstat(M,∆) ∼M−1/2 var1/2
{
φ(j)

}
(14)

depending (weakly) on∆, as well as (strongly) onM . The
confidence interval of the estimated potential is thus:

δ(M,∆) = µ1(M,∆) ± α[µ2(M,∆) − µ2
1(M,∆)]1/2,

(15)
whereα depends on the sought confidence level.

5 COMPARISON WITH OTHER METHODS
AND CONCLUSIONS

The main merits and drawbacks of the above Wiener-
integral+Monte Carlo-method (henceforth WIMC) as
compared to more usual methods, including finite-elements
and the method of moments (henceforth FEM and MoM,
respectively) for solving (4) can be summarized as follows:

• WIMC doesnotrequire any prior mesh-algorithm, nor
is restricted to compute the potential at predetermined
grid points; it can be used to compute the potential
only where needed;

• WIMC has extremely mild memory requirements. In
contrast, MoM and FEM require the storage oflarge
matrices;

• WIMC is intrinsecally parallelizzable;

• WIMC has a rather slow (statistical,∝ M−1/2) con-
vergency rate. By comparison with other methods,
however, it is not significantly slower. Tight accuracy
bounds are also easily obtained.

As a conclusion, WIMC should be seriously considered for
complicated geometries, whenever fast (possibly parallel)
computing engines and relatively little memory are at hand.

The above formalism has been applied to compute the
Laslett coefficients for the proposed stadium-shaped LHC
liner in [7]. More or less obvious generalizations, in-
clude computation of the coherent Laslett coefficients, di-
electric insertions and more general boundary conditions.
This work has been sponsored in part by INFN through the
Salerno University group.
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