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Abstract 3 THE SCHWARTZ FORMULA

An efficient (accurate and fast) numerical framework is inWhenever only aaumericalsolution for the (real valued)
troduced for computing the (incoherent) betatron normalotentialy is possibleat a discrete set of pointthe Laslett
mode Laslett coefficients for beam-liner with completelycoefficients carstill be efficiently computed using (2) by

general transverse geometry. numerical evaluation of Schwartz formulasf3]
1 INTRODUCTION - 2 [ 1 Re(:). I 0 (3
¥(z0) = ;/o m¢[ e(2), Im(z)] (3)

In previous papers[1][2] we introduced a general frame-
work for computing the normal mode Laslett coefficients, jqre, — 20+ Re™ is any circle embracing,, andf (z) is

for beqm Imers. In terms qf th.e associated complex ,(ZDanalytic within and on the aforementioned circle. Comput-
potential. In this communication we extend the previoug, the [ asletts in terms ahtegralsinstead ofderivatives
result to the most general case where the (transverse) liNgry is indeed nice, since, loosely speaking, for the same
geometry is S0 compligated that the (2D) poteptial cann%escribed accuracy, this requires knowledgmoth fewer

be computed in analytic form. The extension is based Q| esof the numerically evaluated potential. However, in
(a suitable generalization of) Cauchy integral formula fop jor 10 use (3), one needs to know the potential at a suit-
computing the Lasletts without using derivatives, and aple number of pointen a circle whereasnostavailable
application of Monte-Carlo Wiener-Ito stochastic i”tegrahumerical methods yield values gfarranged omoncir-

tion for solving Poisson equation. cular mesh grids. This suggests resorting to a numerical
algorithm whichdoes notely to any prior meshing to find

2 NORMAL MODE LASLETT COEFFICIENTS a numerical solution fog.

The betatron normal mode incoherehaslett coefficients 4 POTENTIALS FROM WIENER INTEGRALS
for beam liners possibly surrounded by a co-axial magnetic

yoke can be conveniently computed from an auxiliary comIN€ connection among Wiener processes, functional inte-
plex potential¥:[1][2] grals and Poisson’s equation is well known in probability

theory.[4] Accordingly, the solution of the Dirichlet prob-
o0m) — Gy AU™) = 20 Re W(z,5,7), (1) lem:

. Vf@(m,y) = _g($7y)a (J),y) € Da
as: , 1 { ®(z,y) =0, (z,y) € oD. )
R 1 (2) _
Z=Ep=Zeq. can be written[4]:
In(1)z = L~ (z+iy) andz, = L~ (x3 +iys) denote the T
(complex, scaled) field-point and source-point transverse ®(z,y) =E [/O g lwa(t),wy(t)] dt|, (5)

positions, z.;, = L™ Y(xeq. + iyeq.) iS the beam center

of charge (complex, scaled) equilibrium positiah,is a whereE[] represents aaxpectation valugvith respect to
problem-dependentscaling length (e.g., the pipe diametetiye probability measure associated to the Wiener processes
andp(m) AU™) are the electric and magnetinage po- (random walks)w,,w,) starting at(z,y) at timet = 0,
tentials which are obtained by subctracting from the fulland (first) crossing the bounda¥p at¢ = 7.

potentials the free-space terms, and dots indicate derivation

w.r.t. the argument.[2] Monte Carlo Implementation

Unfortunately, Eq. (2) seems useless whenever expliclyg eynectation value in (5) is recognized to be a Wiener
(analytic) solutions of Laplace equation are not ava'lable'lntegral which can be computed using Monte Carlo

*0n leave of absence from Dip. Scienze Fisiche “E.R. Caianiello”, 2Schwartz formulas can be derived from Cauchy integral theorem,
Univ. of Salerno, and I.N.F.N. Salerno, Italy by exploiting the well known fact that the analytic complex potential is

IFor a strictly relativistic §o = 1) beam, Eq. (2) also gives the co- uniquely determined, up to an irrelevant constant, from its real part alone.
herent betatron normal mode Laslett coefficients in the non-penetrating 2Equation (4) can be extended to the case whétey) is a line source
magnetic-field regime.[2] by a suitable limiting process.
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methods.[5] Accordingly, we introduce a piecewise-linearandii) a statistical errof,; which in view of the central
A—time-step discretizeduler approximatiof6] for the limittheorem is asymptotically gaussian, with zero average

Wiener processes involvéd: and r.m.s deviation:[6]
{ wm(thrl) = ww(tk) + \/5 595 ’ ww(o) =, (6) €stat(M; A) ~ M_1/2 Ua’l“l/Q {¢(J)} (14)
wy (te41) = wy(te) + V2 6y, wy(0) =y,

depending (weakly) or, as well as (strongly) oi/. The

where ¢, = kA, andd,, 4, are independent gaussian ranqnfijence interval of the estimated potential is thus:

dom variables with moments
S(M,A) = pa (M, A) £ ofua (M, A) — p3 (M, A)]'/2,

_ _ 21 _ 21 _ (15)
E(:) = E(6,) =0 , E[(6:)7] = E[(é,)°] = A. (7) wherea depends on the sought confidence level.
A random walk is created, using (6),(7), and evolved until,
att = tq, it has (first) gone beyondD, viz.: 5 COMPARISON WITH OTHER METHODS
AND CONCLUSIONS
(ws(tQ), wy(tq)) & D, The main merits and drawbacks of the above Wiener-
(we (t), wy(te) €D, 0< k < Q. 8) integrak-Monte Carlo-method (hgncefqrth 'V.\IIMC) as
o ] compared to more usual methods, including finite-elements
The exit timer is computed from: and the method of moments (henceforth FEM and MoM,
T—too1 respectively) for solving (4) can be summarized as follows:
A e WIMC doesnotrequire any prior mesh-algorithm, nor
e e s e earpets e Pl
(o) —we(to—1)]? to)— to—1)]? ’

where the coordinates of thexit point (x.,y.) are the
(only) solution inz. € [min{w,(tg-1), ws(tg)}, maz
{wz(tg-1),wz(tg)}] of the system between the (rectilin-
ear) random walk betweeg_; andtg:

wy(tg) —wy(tg-1)

e WIMC has extremely mild memory requirements. In
contrast, MoM and FEM require the storagelafye
matrices;

o WIMC is intrinsecally parallelizzable;

Ye—wy(tQ-1)= wa(tQ)—wa(to_1) [ze —wa(to-1)], e WIMC has a rather slow (statisticak M ~!/2) con-
(20) vergency rate. By comparison with other methods,
and the equation describing (locally) tHB—domain however, it is not significantly slower. Tight accuracy
boundary curvey. = f(x.). For each realization (labeled bounds are also easily obtained.

by a superfixj) of the random path we can compute the

random variable: As a conclusion, WIMC should be seriously considered for

complicated geometries, whenever fast (possibly parallel)
Q1 , computing engines and relatively litle memory are at hand.
W) (z,y) = A Z [ 9 (1), ;j)(tk)} + The above formalism has been applied to compute the
Laslett coefficients for the proposed stadium-shaped LHC
) G) ) liner in [7]. More or less obvious generalizations, in-
+ (T —1g,-1) g [f”e »Ye } ’ (11)  clude computation of the coherent Laslett coefficients, di-

and the associated first and second order momerflEctric insertions and more general boundary conditions.
(M, A) and s (M, A) where M is the total number of This work has been sponsored in part by INFN through the

paths. Salerno University group.
The potential in (5) can be accordingly evaluated as a
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