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Abstract (e) for the even problem and the supersctiptfor the odd

As previously discussed [Fedotov and Gluckstern, Phyg.roblem.

Rev. E54, 1930 (1996)], for a long narrow slot whose
length may be comparable with the wavelength, the usual 2 THE EVEN PART OF IMPEDANCE

static approximation for the polarizability and susceptibilpye to the asymmetry of the problem we now have

ity which enter into the impedance is a poor one. Thereforgependence' and therefore need to use both TM and TE
finding semi-analytic expressions for the impedance of godes. For the TM portion of the modes we have
rectangular slot in a broad frequency range is highly desir-

able. We develop a general analysis based on a variational
formulation, which includes both the realistic coaxial struc-

ture of the beam-pipe and the effect of finite wavelength in

the calculation of the coupling impedance of a rectanguld¥here
slot in a liner wall of zero thickness. We then present a nu-
merical study of the frequency dependence of the couplings'® (7, 8) = Z cosnfAL) (q) {
impedance of a transverse rectangular slot. n

E€(r,0,2) = / dgeosqzd®(r,0),  (2)

In(kr) Fn(kr)
Jn(ka)’ Fy(ka)

]. 3)

Here we use the notation where the first part in square
1 INTRODUCTION brackets corresponds to the pipe region a, and the sec-

We have earlier considered a liner with a symmetric annul@"d part corresponds to the coaxial region< r < b,
slot.[1] This time we consider the azimuthally asymmetri¢VhereF;, is the solution of the Maxwell equations for the
problem of a single rectangular slot in an inner conductdio@xial region for the TM modest, (u) = Yy (u)Jn (rb)—
(liner) of zero thickness. J@(U)Yn(l-ﬁb)]. The other TM field components can be ob-
We call the region inside the inner conductog o the ~ tained using Eq. (2). o
“pipe region” and the region outside the inner conductor FOr the TE portion of the modes we similarly have
a < r < bthe “coaxial region”. The technique consists
of expanding fields in both regions into a complete set of ZOng) (r,0,z) = /dq sin gzp(®) (r,0), (4)
functions. At the common interface the fields have to be
matched, yielding equations for the expansion coefficientg,nere
The solution is then obtained by finally truncating and in- (1) Golor)
verting the resulting matrix equations. e _ . ) | Inlkr n (KT
The longitudinal coupling impedance can be written in (r.6) = - Zn:bmner, ) [J,’l(m)’ an(/ia):| » )
the following form

where G, (kr) is the solution of the Maxwell equations
Z)(k) __ 1 /dSE (4,0, 2 k)el*, (1) for the coaxial region for the TE modes7[(u) =
Zy 2raZyly s ’ Y, (u)J! (kb) — Jn(u)Y, (xb)]. The other TE field com-
ponents can be obtained using Eq. (4).
For the general solution, we must include both TM and
$E modes. The continuity off{®’ andH'*) in the hole at
r = a leads to

where the surface integral is only over the hole, siite
vanishes on the liner wall. Since the driving current on axi
is proportional teexp(—jkz), the problem is simplified by
obtainingZ (k) for an even driving currentos kz and an
odd driving current—; sin kz separately and then taking . . . .
their sum. We should note that the variational method be-/dSlEé’)(a’ o, Z/)K2(2) + /dSlEi')(a’ 0, Z/)Kél)
comes possible only when the problem is separated into an = 0, (6)
even and an odd part. In the even problem H.,., Hy are

even inz, while in the odd problent’,, H,., Hy are odd in

= (where the center of the hole is chosen to be at 0, /dS’E(?)(a,G’, KO /dS’Eé?) (a,0,2)K9
6 =0). Inany casev,, E,., Hy are always even ifi, and z

H, H, E, are always odd irf. We use the superscript = aZylp2mwcoskz, @)
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where 3 THE ODD PART OF IMPEDANCE

K = aZ/dqcosqz cos gz cosnfcosnb'ky,, (8) We now consider the portion of the problem whezé’
p is odd inz. We perform field expansions similar to those

for the even portion of the problem. The continuityféio)
K9 = k{9 = andH” in the hole at- = a leads to the following integral
equations
a Z / dq cos gz sin gz’ sinn@’ cosnbky, (9)
" / dS'ES (0,0, 2" KSS) + / dS'E (a0, 2" K

Kég) = az/dqsinqzsinqz'sinnﬁsinn@'kgg, (10) = 0, (18)
with
2.2
ki = jkaP,(q) — jQQZ Qn(q), (11) / dS'E (a0, 2\ KD+ / dS'ES (0,0, 2 K9
k1o = koy _j Qn( ), (12) = aZylp2n(—jsinkz),(19)
where
S Qn( )- (13)

(o) _ . . . .
Here the functiond, (¢) andQn( ) are given by the fol- 11’ = GZ/dq singzsingz’ cosnf cosnf'kyy, (20)
lowing expressions "

2 Ky = K -

- a Z / dg sin gz cos gz’ cosnf sinné'k12,(21)

5 (q):{ Ji(ka)  Fi(ra) ]

kaJn(ka)  kaF,(ka)

JIn(ka) Gn(ka)
)] . as)

@nle) = |:I<LG,J,;L(I$(L) B kaG', (ka
We now treatP,, and(,, as functions ofca with kb =

(b/a)ka and express these functions as a sum over the zerog (o) _ /d ! innd sin nd' k 29
of the respective denominators. The detailed expansion of azn: qcos gz cos g2 sinnfsinndkyz, (22)
functionsP,, and@,, in terms of algebraic series is given
in [2]. The resulting expressions féf(;, K3, k() and  With k;; given by Egs. (11)-(13). .
K2(f2i)' in Egs. (8)-(10), can then be integrated oyeby From Eq. (1) the odd part of the impedance is
means of the residue theorem.

(0)
From Eqg. (1) the even part of the impedance is ZH _ /dSE(o) a,0, z)sin kz. (23)
Z(e) Zo 27T(LZOIO
2 —1 e ,
2 = mrazil, /dSE§ )(a,0,2)coskz.  (16)  Using Eqs. (18) and (19) we can form
Using Egs. (6) and (7) we can form ZO/Z("
202 =

( / / dS'dS[2E (a,6', 2" E) (a, 0, 2) K'Y

( / / dS'dS[2E (a,6',2')E) (a, 0, 2) K'Y

+ Ei,o)(a7Hl,zl)Ego)(a,a,z)Kfi)
+ B (0,0, 2)EO (a,0,2)K (7 + E§?><a,a',z’)Eé“’(a,e,z>K§3)])
+ Eé,e)(a,9',2/)E§e)(a,9,z)K2(§)]> ?
, (/dSEgO)(a,G,z) sinkz) ; (24)
/ (/dSEge)(a,H,z)coskz> , (17) L .
which is the variational form for the odd part of the

a form independent of the normalization of the fields. impedance. After evaluation of the integrals, we obtain the
we ask that the numerator of Eq. (17) be a minimum wﬂﬁ'na' form for calculation of the odd part of the impedance
respect to the variations df{”) and Eée , subject to the
constraint dSEL (a,0,z)coskz = 1, we confirm that
Eq. (17) is a variational form for the impedance.

After evaluation of the integrals, we obtain the final formFormulas for direct numerical computation of the
for the even part of the impedance.[2] impedance of a rectangular slot have been obtained.

4 NUMERICAL RESULTS AND DISCUSSIONS

1748



As an example, and to test our formulas, we present here
a numerical study of the impedance of rectangular slots of 35—

different azimuthal length. In order to compare our results 304 a=350°

with those presented by Filtz and Scholz[3] we also choose glac0.2

the parameters of the LHC design. 7 b=21 mm
In Figs. 1 and 2, the frequency dependence of both the %20*

real and imaginary parts of the coupling impedance of the E 15+

transverse rectangular slot is presented, with an angular 104
length 180 and 350 degrees, respectively. As expected, the
behavior with respect to frequency strongly differs from the

one of slots with the small angular length, even for rela- 0.00 004  0.08 012 016 020
tively low frequencies. k (mm’)
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g o method makes numerical study fast and accurate. The nu-
E \/J\ merical results obtained for both the imaginary and the real
2104 part correspond to the expected ones for frequencies below
and above cutoff.
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5 SUMMARY

The main purpose of this paper is to present a detailed
analysis of the calculation of the coupling impedance of
a rectangular slot in a coaxial liner of negligible wall thick-
ness over a wide frequency range. We obtain equations
for calculating the even and odd parts of the impedance,
expressed in variational form. The use of the variational
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