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Abstract

A longitudinal single-bunch instability[1] in the damping
rings at the Stanford Linear Collider (SLC) is thought to
contribute to pulse-to-pulse orbit variations in downstream
accelerator sections. To better understand this instability,
we measured the beam phase and bunch length under har-
monic modulations of the rf phase and rf voltage. For
small phase-modulations the measured response can be ex-
plained by interaction of the beam with the cavity funda-
mental mode. For larger excitations, we observed bifurca-
tion and hysteresis effects. The response to an rf voltage
modulation revealed two peaks near the quadrupole-mode
frequency, one of which appears to be related to the longitu-
dinal instability. In this paper we present the experimental
results.

1 INTRODUCTION

Beam-transfer functions measurements (BTFs) were first
suggested[2] as a technique by which to determine beam
stability limits and the coupling impedance of the beam en-
vironment. Since then, measurements have revealed a rich
spectrum of beam physics. For example, ring impedance
studies were carried out using coasting beams by at the ISR
in 1977[3], and for bunched beams at SPEAR in 1990[4].
In 1992, Byrd performed a comprehensive study of collec-
tive phenomena in CESR[5]. More recent measurements
from the IUCF[6] have used BTF’s in the study of non-
linear effects including the creation of resonance islands,
beam splitting, chaos and bifurcations.

We here describe experimental studies at the SLC damp-
ing rings in which we externally modulated the phase or
amplitude of the RF cavities. Typically, the beam was in-
jected and stored, with the modulation turned on. The re-
sponse was measured using a network analyzer (50 s sweep
time, 1 kHz rbw, 401 discrete frequency steps). The param-
eters of the SLC Damping Rings are shown in Table 1. All
measurements were performed with a single bunch.

2 PHASE MODULATION

Ignoring Landau damping, the synchrotron motion of the
beam centroid is described by the same type of differential
equation as the single-particle motion[8]. Representing an
rf phase modulation as a harmonic perturbation, including
the Robinson interaction, and linearizing the rf potential,
the equation of motion is
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parameter symbol value
circumference C 35.27 m
momentum compaction α 0.015
beam energy E 1.19 GeV
rf frequency frf 714 MHz
harmonic number h 84
rf gap voltage Vc 800–860 kV
synchrotron frequency fs ∼ 100 kHz
long. rad. damping time [7] τrad 1.55 ms
rms bunch length σz 5.3–6.8 mm
relative energy spread σδ 9 × 10−4

bunch population Nb 0–2.6×1010

number of klystrons/cavities Nk/Nc 1/2

Table 1: Damping ring parameters during measurement.

ψ̈ + 2λψ̇ + ω2
sψ = φ̂ ν2

me
jωt, (1)

whereψ is the relative phase of the beam with respect to
the modulated RF phase (which, at low current, equals the
beam phase w.r.t. the cavity voltage); i.e.,

ψ ≡ φ− φ̂ sin(νmθ + χ), (2)

In Eq. (1),λ = 1/τ is the Robinson damping rate,ωs the
angular synchrotron frequency,̂φ the modulation ampli-
tude,νmfrev the modulation frequency,χ a constant phase
factor, and for simplicity the synchronous phase angle has
been set to zero. Defining1 the complex beam transfer func-
tion BTF as the ratio of the beam centroid phase and the rf
modulation amplitudêφ,

BTF(ωm) ≡ φ̄(ωm)

φ̂
, (3)

the amplitude of the BTF is a Lorentzian

ABTF (ωm) = ω2
m

(
1

(ω2
s − ω2

m)2 + 4λ2ω2
m

)1/2

(4)

and its phase is

θBTF (ωm) = tan−1(−λ/(ωs − ωm)). (5)

Shown in Fig. 1 is a BTF measured in the positron damp-
ing ring (SDR) for a small phase-modulation depth (φ̂ ≈
0.006◦) and low beam current (Nb ≈ 7 × 109). The data
were acquired by modulating the phase of the 714 MHz
drive using a network analyzer which output an excitation

1Note that this definition differs from that in Refs. ([4, 5], which both
define the BTF aṡ̄φ/(φ̂ω2

m).
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of fixed amplitude and variable (swept) frequency to a fast
phase shifter located upstream of a klystron. The phase of
the beam with respect to the cavities was measured using
a detector which mixed the signals from a cavity pickup
and from a single stripline of a beam position monitor. The
detector output was normalized to the modulation output.
Figure 1 demonstrates that the measured response is well
described by Eqs. (4) and (5) with a damping time1/λ
equal to the measured (coherent) oscillation decay time of
∼3500 turns.
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Figure 1: Comparison of measured BTF amplitude and
phase with Eqs. (4) and (5) for a single-bunch population
Nb ≈ 7 × 109 and small excitation,φrms ≈ 0.004◦.

We also calculated the beam phase response that would
be expected from Landau damping due to the nonlinearity
of the RF voltage, in this case ignoring the Robinson damp-
ing. The calculated response agreed poorly with measure-
ment which indicates that the single-bunch measurement
was dominated by the Robinson interaction.

Figure 2 illustrates the dependence of the BTF on the
excitation amplitude. For low excitation amplitudes the re-
sponse is Lorentzian as in Fig. 1. With increasing modu-
lation depth the response revealed an asymmetric behavior,
characteristic of a driven nonlinear oscillator. In particular,
a pronounced dip transition was observed at frequencies
somewhat below the peak-response frequency.

An oscillatory solution of the nonlinear equation of mo-
tion (i.e., for a sinusoidal rf potential) is [9]ψ(θ) =
α sin(νmθ). The fixed-point amplitudeα is approximately
described by a cubic equation, which bifurcates at a modu-
lation frequencyfm = frevν

′
m:

∆ν
νs

≡ νs − ν′m
νs

= φ̂2/3

(
3
8
21/3

)
, (6)

At the bifurcation point, one of two stable fixed points van-
ishes. In Eq. (6),frev is the revolution frequency andνs ≡
ωs/(2πfrev) the synchrotron tune. Fitting a straight line
to the measured data oflog ∆ν/νs versuslog φ̂, we find a
slope of0.637 ± 0.015 and an intercept of−0.875±0.08.
This is consistent with the expected slope (2

3 ) and intercept

90 100
–90

–70

f   (kHz)

A
  (

dB
V

)

4–97 8299A2

110 120

–50

φrms = 0.8°

0.4°

0.04°

0.004°

0.2°

0.02°

–30

–10

Figure 2: SDR beam-phase transfer function for various ex-
citation amplitudes. The single-bunch population is about
Nb ≈ 3–7×109.

(−0.76) from Eq. (6), which supports the assertion that the
dip is related to a transition between the two fixed points.
The origin of the dip has been studied in more detail re-
cently at the ALS [10].

Because the beam response is strongly reminiscent of a
driven nonlinear oscillator, we expect to see a different re-
sponse curve when the frequency is swept downward. This
is demonstrated in Fig. 3, which shows two beam-phase
transfer functions for up- and downward frequency sweeps.
At large excitation, we observe a clear hysteresis effect.

3 VOLTAGE MODULATION

Shown in Fig. 4 is the measured response of the beam
peak current to an rf amplitude modulation in the SDR.
The data were acquired by modulating the amplitude of
the 714 MHz drive using an rf attenutator. The detected
peak current signal is inversely proportional to the bunch
length. As illustrated in Fig. 4, the response curve for the
SDR revealed two peaks. In contrast, only a single peak
was detected in the electron damping ring (NDR). Fig. 5
summarizes the current dependence of the response peaks
in the two damping rings. The lower-frequency peak in the
SDR and the peak in the NDR show a current-dependent
frequency similar to that predicted for the longitudinal in-
stability (7 kHz/1010[11]). The higher-frequency peak of
the SDR occurs almost exactly at 2νs. In the SDR, the
beam response to a voltage modulation was largest when
the two response peaks came close to each other. This hap-
pened both for large excitations (∆V/V ≥ 3%) and for
low bunch intensities (Nb ≤ 1010). The peculiar shape of
the phase response (bottom part of Fig. 4) may contain ad-
ditional information about the instability.

4 OUTLOOK

The reasonably good agreement between the measured
beam response and Eq. (4) suggests that, at low current
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Figure 3: Comparison of SDR beam-phase transfer func-
tions for upward and downward frequency sweeps at dif-
ferent excitation amplitudes.

and for low excitation, the response is dominated by the
Robinson interaction with the fundamental cavity mode. It
is difficult therefore to extract information about the beam
distribution and/or the broad-band impedance. A more di-
rect approach would be to excite anl 6= 0 multi-bunch
mode[5], since this would suppress the effect of the funda-
mental mode. A measurement of the broadband impedance
may improve our understanding of the longitudinal insta-
bility, and resolve the discrepancy between the inductive
impedance calculated with MAFIA and that required to re-
produce the observed instability in simulations[11].
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Figure 4: Voltage-modulation BTF in the SDR withNb =
1.6× 1010 and an rms gap voltage modulation of 2 kV.
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