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Abstract 2 GENERAL SOLUTION

The beam coupling impedances of small obstacles protrutthe longitudinal coupling impedance of a small disconti-
ing inside the vacuum chamber of an accelerator are calcauity on the wall of a circular beam pipe of radiR€s[1]
lated analytically at frequencies for which the wavelength

. . . - . Qe +
is large compared to a typical size of the obstacle. Sim- Z(k) = —iZok———5» (1)

ple formulas for a few important particular cases, including Am*R

both essentially three-dimensional objects like a post orwhen the wavelengtBr/k is large compared to the ob-
mask and axisymmetric irises, are presented. The analyttacle size. HereZ, = 1207 € is the impedance of free
cal results are compared and agree with three-dimensiorslace s = w/c is the wave number, and,, o, are the
computer simulations. These results allow simple practicalectric and magnetic polarizabilities of the discontinuity.
estimates of the broad-band impedance contributions froffhe transverse impedance is proportional to the same com-

such discontinuities. bination of polarizabilities. + «.,,, and the real part of the
impedance is small at such frequencies (seel[5, 4] for detail,
1 INTRODUCTION as well as for other chamber cross sections). Let the obsta-

) ) _ cle shape be a half-ellipsoid with semiaxifm the longitu-
Due to high currents in modern accelerators and colliderg;na| direction (along the chamber axig)in the radial di-
even contributions from small discontinuities of the vacyaction and: in the azimuthal one. When b, ¢ < R, the

uum chamber to the impedance budget of the machine haygsiacle is small and the Bethe approach can be applied. To
to be accounted for. Numerous pumping holes — a feyfnq the polarizabilities, one needs to calculate the induced
hundred per meter — in the vacuum screen of the Larggectric dipole momenf of the obstacle illuminated by
Hadron Collider (LHC) can serve as an example. Their tog homogeneous radial electric fielt), and the magnetic

tal contribution to the machine impedance in the initial dedipole momentM/ when it is illuminated by an azimuthal
sjgn was calculated[1, 2] using thg Bethe theory of diﬁracmagnetic fieldH,. This problem was reduced[12] to the
tion of EM-waves by a small hole in a metal plane [3], anqye||-known problem for an ellipsoid immersed in a homo-

found to be dangerously large, close to the beam i”Stab”iEYeneous field, e.g.,[7]. Adding obvious symmetry consid-
threshold. Proposed design changes reduced the impedagggions. we get

more than an order of magnitude[4]. The method’s basic

idea is that the hole, at frequencies where the wavelength =~ P 2mabc o M 2mabe

is large compared to the typical hole size, can be replacege - 2e0Ey 3L, "™ 2Hy  3(I.—1)°
by two induced dipoles, an electric and a magnetic one. (2)
Using essentially the same idea, the method was extendehere

for arbitrary-shaped small discontinuities on the pipe of abe ds

an arbitrary—shgped cross s'ection'[S].' The impedance cal-lo = 7/0 (5 1 02)3/2(5 1 a2) /2 (s + 2)i/2 ’ 3)
culation for a given small discontinuity was therefore re-

duced to finding its electric and magnetic polarizabilitiesand!. is given by Eq. (3) withb andc interchanged.
Analytical results in this direction have been obtained for

axisymmetric obstacles[6], as well as for holes and slots: 3 POST AND MASK

circular[3] and elliptic[7] holes in a zero-thickness wall,

g:gct:;i(r)[]fglaﬁgda (railrl:pflscrgil 23 Ic?jt[Tl]a thick wall, varioUs ;4 the integralin Eq. (3) can be expressed in terms of the
, g p . pé/pergeometricfunctiomFli

In arecent paper[12] the method was applied to calcula
the coupling impedances of obstacles protruding inside the orazh
beam pipe, I.ike. a narrow post or a mask intercep.ting syn- Qe = 2F1(1,1;5/2;1— h2/a?)’ (4)
chrotron radiation. Formulas derived make practical esti-
mates very simple. Numerical simulations required to oband
tain similar results are necessarily 3D ones, and therefore ora’h
are rather involved. This statement is generally applica- Q= .

; L . Fi(1,1;5/2;1—a2/h2%) -1

ble for any small discontinuities, but especially for those 8RR 15/21 = a?/h?) — 1]
protruding into the vacuum chamber. Below we list the anin the limit ¢ < h, which corresponds to a pin-like obsta-
alytical results[12] and compare them with simulations. cle, a. ~ (27h3/3)/ [In (2h/a) — 1] is much larger than

Inthe case: = ¢, b = h we have an ellipsoid of revolution,

()
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Qi =~ —21a?h /3. Note thatin this limitv,,, ~ —V, where A, so that our model mask has the semicircular shape with

V = 2ma?h/3 is the volume occupied by the obstacle (andadiush in its largest transverse cross section. Then the

subtracted from that occupied by the beam magnetic fieldptegral in Eq. (3) is reduced to

similarly to the axisymmetric case[6]. These results give us

a simple expression for the inductive impedance afian Iy = I =2 Fy (1,1/2;5/21 = h?/a?) /3,

row pin (post) of heighth and radius:, a < h, protruding  and we further simplify the result for two particular cases.

radially into the beam pipeé: The first one is thehin mask, a < h, in which case
13 a. ~ 8h3/3, and again it dominates the magnetic term,

) 6) am ~ -V = —2mah?/3. The coupling impedance for
6w R? (In (2h/a) — 1) such an obstacle — a half-disk of radibisand thickness
2a, a < h, transverse to the chamber axis — is therefore

Z(k}) ~ —ikZQ

One more particular case of interest herg is q, i.e., a

semispherical obstaclef radiusa. From Egs. (4)-(5) the ) 243 4 7\ a
impedance of such a discontinuity is Z(k) = —zkzom [ ( — Z) m +.. } ., (8)
208 = —ikZ a® 2 where the next-to-leading term is shown explicitly.
(k) = —i O4rR2’ 7 In the opposite limit,h < a, which corresponds to

S . . a long (along the beaminask, the leading termsy, ~
which is 3w/2 times that for a circular hole of the same_, " . 4rah2/3 cancel each other. As a result, the

radius in a thin wall[1]. impedance of a long mask with lengtk: 2a and height:,
The MAFIA code package[14] was used to compute thﬁ <lis

impedances of various small protrusions for comparison ’

with analytical results. Calculating wakes due to protru- Z(k) ~ —ikZo 4n* n | 1 )

sions is a more difficult task for MAFIA than those due to a 3rR2l h ’

cavities. One ha_s to §|ther use a long pipe (which lea hich is relatively small due to the “aerodynamic” shape

to a huge mesh since it should be homogeneous along t

beam path), or apply a trick with tapers on the pipe endzs_)1|

The tapers make transitions to a new end Pipe with radi ask with a semicircular transverse cross section of radius

R, < R — h, so that the new structure looks like a shallow,

. The diff t wak ted with and with versus its normalized half-lengtt/h. The comparison
cavity. The ditierence of wakes computed with and withouf iy, ¢ asymptotic approximations Egs. (8) and (9) is also
a protrusion gives us its contribution. We used the seco cﬁl]

. ) own. One can see that the asymptotic behavior (9) starts
approach with pipes fromdR to 8 R long and meshes up to to work well only for very long myasIF()s, namely, Whéﬁ):

2-10° poipts. Simulation results are ugually highgr thara > 10h. Figure 2 demonstrates that the mask impedance
th_e analyt!cal ones, but go qlown asa fme_r mesh is use épends rather weakly on the length. Even a very thin mask
Figure 1 gives some comparison for a semisphere. (a < h) contributes as much &/ (37) ~ 0.85 times the

semisphered = h) impedance, Eq. (7), while for long

this obstacle, in complete analogy with results for long
iptic slots[1, 2, 10]. Figure 2 shows the impedance of a

35 masks the impedance decreases slowly;/ at= 20, it is
30 g still 0.54 of that for the semisphere.
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Figure 1. Comparison of MAFIA results (dots) for the in-
ductance of a semispherical protrusion with the analytical 0 5 i A .
ones (solid line) from Eq. (7), for different sphere radii. a/h

Pipe radiusk = 2 cm.

Another practical result that can be derived from the gerfFigure 2: Mask impedancg (in units of that for a semi-
eral solution, Egs. (2)-(3), is the impedance ahaskin- ~ sphere with the same depth, Eq. (7) with= h) versus its

tended to intercept synchrotron radiation. We put ¢ =  length. The narrow-mask approximation, Eq. (8), is short-

_ o dashed, and the long-mask one, Eq. (9), is long-dashed.
10ne could use the known result for the induced electric dipole of .
a narrow cylinder parallel to the electric field [13]. It will only change  IN Practice, however, the mask has usually an abrupt cut

In(2h/a) — 1in Eq. (6) toln(4h/a) — 7/3. toward the incident synchrotron radiation, so thatit is rather
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one-half of a long mask. Numerical simulations show that
the low-frequency impedances of a semisphere and a half- z=aw+hyv w2 —-1.

semisphere of the same depth — which is a relatively short\ne need an inverse mapping, but, fortunately, it is

mask — are almost equal (within the errors), and close though to find its asymptotic behavior at largenduw [6],
that for a longer half-mask. From these results one cagnich is

conclude that a good estimate for the mask impedance is
given simply by Eq. (7). One more interesting observa- z h1
2

tion is that the inductances found numerically for two half- w= a+h z T

semispheres — one with a cut toward the incident beam The ratio of the coefficients of the second and first terms
and the other, mirrored — —z — differ by 3%, while  on the RHS isi. /7, cf.[6], which leads us exactly to the
they have to be equal as was proven analytically[15].  result fora. in Eq. (11). It is even easier for the particu-
lar caseh = a, when the iris has a semicircular profile of
4 AXISYMMETRIC IRIS radiusa. The explicit conformal mapping for this case is

Following a similar procedure one can also easily obtaife"y SiMPlew = (z/a + a/z)/2. The comparison QOf.the
the results for axisymmetric irises having a semi—ellipticSecond and f_|rst terms on the RHS givestus= ma®, in
profile in the longitudinal chamber cross section, Withagreementwnh Eq. (11).

depthb = h and length2a along the beam. For that pur-

pose, one should consider the limit— oo in Eq. (3) > SUMMARY

to calculate polarizabilities.. anda.,, per unit length of Analytical expressions of the impedances for both 3D and
the circumference of the chamber transverse cross sectigiisymmetric small obstacles protruding inside a beam
The broad-band impedances of axisymmetric discontingsipe are obtained, and they agree well with numerical re-
ities have been studied in [6], and the longitudinal couplinguyits. These formulas greatly simplify calculations of the

impedance is given by broad-band contributions to the coupling impedances from
a4 & such discontinuities, especially in the 3D case.
Z(k) = —iZokeziRm , (10) The present approach does not work for enlargements of
g the vacuum chamber. However, existing analytical results
quite similar to Eq. (1). As: — oo, the integrall. — 0, for holes and slots[1, 2, 4, 5], as well as for axisymmetric
andI, is expressed in elementary functions as enlargements[6], cover this case quite well.
) Stimulating discussions with Dr. R.L. Gluckstern and Dr.
I, = 12F1 (1, 1; 91— h_) __o F.L. Krawczyk are gratefully acknowledged.
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