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Abstract

The beam coupling impedances of small obstacles protrud-
ing inside the vacuum chamber of an accelerator are calcu-
lated analytically at frequencies for which the wavelength
is large compared to a typical size of the obstacle. Sim-
ple formulas for a few important particular cases, including
both essentially three-dimensional objects like a post or a
mask and axisymmetric irises, are presented. The analyti-
cal results are compared and agree with three-dimensional
computer simulations. These results allow simple practical
estimates of the broad-band impedance contributions from
such discontinuities.

1 INTRODUCTION

Due to high currents in modern accelerators and colliders,
even contributions from small discontinuities of the vac-
uum chamber to the impedance budget of the machine have
to be accounted for. Numerous pumping holes — a few
hundred per meter — in the vacuum screen of the Large
Hadron Collider (LHC) can serve as an example. Their to-
tal contribution to the machine impedance in the initial de-
sign was calculated[1, 2] using the Bethe theory of diffrac-
tion of EM-waves by a small hole in a metal plane [3], and
found to be dangerously large, close to the beam instability
threshold. Proposed design changes reduced the impedance
more than an order of magnitude[4]. The method’s basic
idea is that the hole, at frequencies where the wavelength
is large compared to the typical hole size, can be replaced
by two induced dipoles, an electric and a magnetic one.
Using essentially the same idea, the method was extended
for arbitrary-shaped small discontinuities on the pipe of
an arbitrary-shaped cross section[5]. The impedance cal-
culation for a given small discontinuity was therefore re-
duced to finding its electric and magnetic polarizabilities.
Analytical results in this direction have been obtained for
axisymmetric obstacles[6], as well as for holes and slots:
circular[3] and elliptic[7] holes in a zero-thickness wall,
circular[8] and elliptic[9] holes in a thick wall, various
slots[10], and a ring-shaped cut[11].

In a recent paper[12] the method was applied to calculate
the coupling impedances of obstacles protruding inside the
beam pipe, like a narrow post or a mask intercepting syn-
chrotron radiation. Formulas derived make practical esti-
mates very simple. Numerical simulations required to ob-
tain similar results are necessarily 3D ones, and therefore
are rather involved. This statement is generally applica-
ble for any small discontinuities, but especially for those
protruding into the vacuum chamber. Below we list the an-
alytical results[12] and compare them with simulations.

2 GENERAL SOLUTION

The longitudinal coupling impedance of a small disconti-
nuity on the wall of a circular beam pipe of radiusR is[1]

Z(k) = −iZ0k
αe + αm

4π2R2
, (1)

when the wavelength2π/k is large compared to the ob-
stacle size. HereZ0 = 120π Ω is the impedance of free
space,k = ω/c is the wave number, andαe, αm are the
electric and magnetic polarizabilities of the discontinuity.
The transverse impedance is proportional to the same com-
bination of polarizabilitiesαe +αm, and the real part of the
impedance is small at such frequencies (see[5, 4] for detail,
as well as for other chamber cross sections). Let the obsta-
cle shape be a half-ellipsoid with semiaxisa in the longitu-
dinal direction (along the chamber axis),b in the radial di-
rection, andc in the azimuthal one. Whena, b, c � R, the
obstacle is small and the Bethe approach can be applied. To
find the polarizabilities, one needs to calculate the induced
electric dipole momentP of the obstacle illuminated by
a homogeneous radial electric fieldE0, and the magnetic
dipole momentM when it is illuminated by an azimuthal
magnetic fieldH0. This problem was reduced[12] to the
well-known problem for an ellipsoid immersed in a homo-
geneous field, e.g.,[7]. Adding obvious symmetry consid-
erations, we get

αe =
P

2ε0E0
=

2πabc

3Ib
, αm =

M

2H0
=

2πabc

3(Ic − 1)
,

(2)
where

Ib =
abc

2

∫ ∞

0

ds

(s + b2)3/2(s + a2)1/2(s + c2)1/2
, (3)

andIc is given by Eq. (3) withb andc interchanged.

3 POST AND MASK

In the casea = c, b = h we have an ellipsoid of revolution,
and the integral in Eq. (3) can be expressed in terms of the
hypergeometric function2F1:

αe =
2πa2h

2F1(1, 1; 5/2; 1− h2/a2)
, (4)

and

αm =
2πa2h

3 [2F1(1, 1; 5/2; 1− a2/h2) − 1]
. (5)

In the limit a � h, which corresponds to a pin-like obsta-
cle, αe ' (2πh3/3)/ [ln (2h/a) − 1] is much larger than
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αm ' −2πa2h/3. Note that in this limitαm ' −V , where
V = 2πa2h/3 is the volume occupied by the obstacle (and
subtracted from that occupied by the beam magnetic field),
similarly to the axisymmetric case[6]. These results give us
a simple expression for the inductive impedance of annar-
row pin (post) of heighth and radiusa, a � h, protruding
radially into the beam pipe:1

Z(k) ' −ikZ0
h3

6πR2 (ln (2h/a)− 1)
. (6)

One more particular case of interest here ish = a, i.e., a
semispherical obstacleof radiusa. From Eqs. (4)-(5) the
impedance of such a discontinuity is

Z(k) = −ikZ0
a3

4πR2
, (7)

which is 3π/2 times that for a circular hole of the same
radius in a thin wall[1].

The MAFIA code package[14] was used to compute the
impedances of various small protrusions for comparison
with analytical results. Calculating wakes due to protru-
sions is a more difficult task for MAFIA than those due to
cavities. One has to either use a long pipe (which leads
to a huge mesh since it should be homogeneous along the
beam path), or apply a trick with tapers on the pipe ends.
The tapers make transitions to a new end pipe with radius
Rp ≤ R− h, so that the new structure looks like a shallow
cavity. The difference of wakes computed with and without
a protrusion gives us its contribution. We used the second
approach with pipes from4R to 8R long and meshes up to
2 · 106 points. Simulation results are usually higher than
the analytical ones, but go down as a finer mesh is used.
Figure 1 gives some comparison for a semisphere.
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Figure 1: Comparison of MAFIA results (dots) for the in-
ductance of a semispherical protrusion with the analytical
ones (solid line) from Eq. (7), for different sphere radii.
Pipe radiusR = 2 cm.

Another practical result that can be derived from the gen-
eral solution, Eqs. (2)-(3), is the impedance of amask in-
tended to intercept synchrotron radiation. We putb = c =

1One could use the known result for the induced electric dipole of
a narrow cylinder parallel to the electric field [13]. It will only change
ln(2h/a) − 1 in Eq. (6) toln(4h/a) − 7/3.

h, so that our model mask has the semicircular shape with
radiush in its largest transverse cross section. Then the
integral in Eq. (3) is reduced to

Ib = Ic = 2F1

(
1, 1/2; 5/2; 1− h2/a2

)
/3 ,

and we further simplify the result for two particular cases.
The first one is thethin mask, a � h, in which case

αe ' 8h3/3 , and again it dominates the magnetic term,
αm ' −V = −2πah2/3. The coupling impedance for
such an obstacle — a half-disk of radiush and thickness
2a, a � h, transverse to the chamber axis — is therefore

Z(k) = −ikZ0
2h3

3π2R2

[
1 +

(
4
π
− π

4

)
a

h
+ . . .

]
, (8)

where the next-to-leading term is shown explicitly.
In the opposite limit,h � a, which corresponds to

a long (along the beam)mask, the leading termsαe '
−αm ' 4πah2/3 cancel each other. As a result, the
impedance of a long mask with lengthl = 2a and heighth,
h � l, is

Z(k) ' −ikZ0
4h4

3πR2l

(
ln

l

h
− 1

)
, (9)

which is relatively small due to the “aerodynamic” shape
of this obstacle, in complete analogy with results for long
elliptic slots[1, 2, 10]. Figure 2 shows the impedance of a
mask with a semicircular transverse cross section of radius
h versus its normalized half-length,a/h. The comparison
with the asymptotic approximations Eqs. (8) and (9) is also
shown. One can see that the asymptotic behavior (9) starts
to work well only for very long masks, namely, whenl =
2a ≥ 10h. Figure 2 demonstrates that the mask impedance
depends rather weakly on the length. Even a very thin mask
(a � h) contributes as much as8/(3π) ' 0.85 times the
semisphere (a = h) impedance, Eq. (7), while for long
masks the impedance decreases slowly: atl/h = 20, it is
still 0.54 of that for the semisphere.
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Figure 2: Mask impedanceZ (in units of that for a semi-
sphere with the same depth, Eq. (7) witha = h) versus its
length. The narrow-mask approximation, Eq. (8), is short-
dashed, and the long-mask one, Eq. (9), is long-dashed.

In practice, however, the mask has usually an abrupt cut
toward the incident synchrotron radiation, so that it is rather
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one-half of a long mask. Numerical simulations show that
the low-frequency impedances of a semisphere and a half-
semisphere of the same depth — which is a relatively short
mask — are almost equal (within the errors), and close to
that for a longer half-mask. From these results one can
conclude that a good estimate for the mask impedance is
given simply by Eq. (7). One more interesting observa-
tion is that the inductances found numerically for two half-
semispheres — one with a cut toward the incident beam
and the other, mirroredz → −z — differ by 3%, while
they have to be equal as was proven analytically[15].

4 AXISYMMETRIC IRIS

Following a similar procedure one can also easily obtain
the results for axisymmetric irises having a semi-elliptic
profile in the longitudinal chamber cross section, with
depthb = h and length2a along the beam. For that pur-
pose, one should consider the limitc → ∞ in Eq. (3)
to calculate polarizabilities̃αe and α̃m per unit length of
the circumference of the chamber transverse cross section.
The broad-band impedances of axisymmetric discontinu-
ities have been studied in [6], and the longitudinal coupling
impedance is given by

Z(k) = −iZ0k
α̃e + α̃m

2πR
, (10)

quite similar to Eq. (1). Asc → ∞, the integralIc → 0,
andIb is expressed in elementary functions as

Ib =
1
22F1

(
1,

1
2
; 2; 1− h2

a2

)
=

a

a + h
.

It gives us immediately

α̃e = πh(h + a)/2 ; α̃m = −πah/2 , (11)

and the resulting impedance of the iris of depthh with the
semielliptic profile is simply

Z(k) = −ikZ0
h2

4R
, (12)

which proves to be independent of the iris thicknessa. The
same result has been recently obtained using another, direct
method[16].

One should emphasize thatα̃m in Eq. (11) is just an iris
cross-section area (with negative sign), which is correct for
any small axisymmetric discontinuity, as was pointed out
in [6]. However, calculating̃αe in general is not easy: a
conformal mapping was constructed for that purpose in [6]
for irises (as well as for chamber enlargements) having a
trapezoid (or rectangular, or triangular) profile. An inter-
esting fact is that the leading behavior for thin irises of all
shapes is exactly the same as Eq. (12).

In fact, the same approach can be applied here. The con-
formal mapping from the upper half-planew into z with
the boundary including the iris having a semielliptic profile
is given by

z = aw + h
√

w2 − 1 .

We need an inverse mapping, but, fortunately, it is
enough to find its asymptotic behavior at largez andw [6],
which is

w =
z

a + h
+

h

2
1
z

+ . . .

The ratio of the coefficients of the second and first terms
on the RHS is̃αe/π, cf.[6], which leads us exactly to the
result forα̃e in Eq. (11). It is even easier for the particu-
lar caseh = a, when the iris has a semicircular profile of
radiusa. The explicit conformal mapping for this case is
very simple,w = (z/a + a/z)/2. The comparison of the
second and first terms on the RHS gives usα̃e = πa2, in
agreement with Eq. (11).

5 SUMMARY

Analytical expressions of the impedances for both 3D and
axisymmetric small obstacles protruding inside a beam
pipe are obtained, and they agree well with numerical re-
sults. These formulas greatly simplify calculations of the
broad-band contributions to the coupling impedances from
such discontinuities, especially in the 3D case.

The present approach does not work for enlargements of
the vacuum chamber. However, existing analytical results
for holes and slots[1, 2, 4, 5], as well as for axisymmetric
enlargements[6], cover this case quite well.

Stimulating discussions with Dr. R.L. Gluckstern and Dr.
F.L. Krawczyk are gratefully acknowledged.
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