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Abstract (see, for example, [3]):
Coherent modes which are present when there is no inco- J, 00,/0.7, .

- = ¢ acd 1
herent tune spread may be absent when such a spread ex / 0wy (I Jy) — mws (o, Jy) (1)

ists. Such modes are “Landau damped.” There is instead an im|
incoherent spectrum, a continuum of an infinite number of / 2 Wo(J)
frequencies, which will decohere (filament), thus not lead- Q —wy(J;) — mw,(J,)
ing to collective instabilities. A stability diagram indicates glml 0V, /01T
when Landau damping will be effective. It divides the ef- = =
fective impedance plane, or equivalently the plane of coher- @ —muw,(J2)
ent frequency in the absence of tune spread, into regiong, oo ., is the longitudinal azimuthal mode number.
The region which contains-ico corresponds to instabil- These are for the cases of transversenodes for tune

ity. Thus, one can substitute a simpler computation (finds, o5 4 with two-plane transverse amplitude (Eq. (1)), trans-
g d!screte glgenvalues) for a more complex' ComPUtat'QI'Ersey modes for tune spread with longitudinal ampli-
(sonmg an glgenvalue system with both a dlscret('a. and_tﬁde (Eq. (2)), and longitudinal modes for tune spread with
continuous eigenvalue spectrum). We present stability d"'f’dngitudinal amplitude (Eq. (3)). There are similar terms
grams assuming a linear tune shift with amplitude, allowing i, taking the opposite sign. Equations (2—3) are
tune spread in two transverse pIape; or in the IongitudinBHy cgrrect under the assumption that the frequency of
plane alone. When there is Iongltudlnql tune sprgad, ,th{ﬁe impedance is small compared to the frequencies in the
can not be done exactly, 'and we describe approximatiogg, -1, spectrum. In the more general case these terms will
which make the computation tractable. depend on the frequency of the impedance. Also, Egs. (1-
2) ignore a term giving the longitudinal force due to the
1 INTRODUCTION transverse wake, which is typically small.
If w(J) is a constanky, (“linear lattice”), then the inte-
als (1-3) simplify greatly:

a3J (2)

d3J, (3)

This paper discusses stability diagrams for Landau damBF
ing in two situations: Landau damping of transverse os-
cillations when there is tune spread with transverse ampli- 1

tude inbothplar_wesz and Landau dal_“nping of Iongituc_:iinal or O —wi, — mwr- (4)
transverse oscillations when there is tune spread with longi- 1

tudinal amplitude only, and when the relevant frequencies /Jz‘m|\IIO(J)d3J (5)
in the impedance are small compared to the frequencies in Q—wry —mwr:

the bunch. The latter has been described by Wang and oth- 1 /J‘T”'%d‘gj. (6)
ers [1, 2], however, only for Gaussian distributions. Here, Q—mwr, ° 0J.

we treat distributions other than Gaussian, and point out ah his is th h h ¢ 6 b
caution for the use of these stability diagrams in the trang- en this is t € case, the coherent frequen @:an be
verse case which was not addressed in [2]. These co _qnd by solving an eligenvalue problem. If one 'gnores
putations require one to ignore azimuthal mode couplin zimuthal mode coupling, the problem for the nonlinear

however, they do demonstrate how to determine the effe gltice can be solved in terms of the problem for the lin-
ear lattice: solve the eigenvalue system to find the value

of tune spread on mode coupling under some conditions. fth e t ¢ £ 16 te that to th
First, assume that the coordinates in terms of actiord '€ appropriate term from Egs. (4-6), equate that to the

angle variables are/2.7 Bu(s) cos|f-+ Adbe (s)], and that corresponding term from Egs. (1-3), and solve for §he

the distribution about which one is analyzing perturbationglppe"’mr?g in the latter.
is of the form Equations (1-3) do not map the complexplane com-

pletely onto itself; there are some points in the complex
1 plane for which there is n@ mapped onto that point. This
S(Je/€x, Jy/ey) N2 /€2), is because the integrals (1-3) are bounded functiofis of
in other words, for currents/impedances which are suffi-
where the integrals of the functionsand S are 1, as are ciently small, even though there is a solution for the eigen-
their first moments. Then the following integrals, closelyalue problem for a linear lattice, there is no corresponding
related to the beam transfer function, appear when perforreelution for the problem for the nonlinear lattice. Such a
ing a perturbation analysis to obtain the coherent modeslution is “Landau damped.”

Vo(J) = (2)°

€x€y€s
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Figure 1. Example use of a stability diagram. The circles_ N
are the complex tune shifts of the transverse= 1 multi- ~ Figure 2: Stability curves for transverse tune spread, when
bunch modes computed for a linear lattice. The solid line igy = 5 x 107°. The thin lines are for the distribution (8),
the stability diagram. In this case, all the modes are Landa¥hereas the thick lines are for (9) & 4.5 for the solid,

damped since they all lie below the stability curve. p = 12.5 for the dashed). All lines have, = —3.58 x
10", except for the thin dashed line, for which it is zero

(one-dimensional).

A stability diagram is simply a “stability curve” drawn in
the plane of the complex coherent tune shifts for the linear
problem which delimits the region for which solutions exisfor AQ2m 1 1argeAQy, | — v, —2v, + O(v;/AQ7, | ). This
for the nonlinear problem. Figure 1 demonstrates how @ymptotic expansion allows one to compute the effects of
stability diagram is used. tune spread when the mode one is examining has a coher-

Formulas and example stability diagrams will be givergnttune shift which is large compared to the tune spread. In
here; derivations will be given in a forthcoming paper. Prosuch cases, one can compute the mode frequencies to sec-
grams to produce the curves described here can be obtairdtl order in the ratio of the tune spread to the tune shift by
from http://wwwslap.cern.ch/collective/jsberg/landau/.  replacing all the terms like Eq. (1) with the corresponding

We make the additional assumption that the incohereff'™M (4), exceptthab,, + aas + 2aqy is used instead of
tune, due to forces from magnets and potential well dis<Za. €xpressing the fact that the average tune in the bunch
tortion, is linear in the actionw = w; + AJ. Ais a IS notthe tune at zero amplitude. This allows one to per-

symmetric constant matrix, whose components are givdArm a mode coupling analysis in cases where both modes
by Aup = aas/es, Where thees are the emittances. This have shifted by amounts large compared to the tune spread.

is a good assumption in the transverse planes, but may not S
be as good in the longitudinal plane, mainly because &1 Specific Distributions

potential-well distortion. Consider two distributions
2 TRANSVERSE TUNE SPREAD plu)=e"" (8)
-3
For transyerse tune spread only, begin'by making gfurther plu) = (1 — 1)2/1 -2) (1 _ E)’j 0<u<pu (9)
assumption thaf(z, y) = p(x + y). The integral (1) is jz u
/00 /°° yp' (z +9) dod which correspond to Gaussian and parabolic-like distribu-
_ v dy, . . . )
o Jo AQmi —vez — vy Yy tions in one transverse coordinate:
whereAQ,, | = Q—wry —mwr, andv, = aya +Mazq. #5—92/2‘75 (10)
This integral can be written in the form V2moy
—3/2
L I(u) v\
fwy) — flwg) (1-— .yl <V 2u0
wy f'(wy) — vwﬁ V2mpoy (e —1/2) 2uo? v Y
, forv, #v, (7) (1))
Vy — Vg
1 d o . L
- —[wa’(wy)] for v, = v, The dlstrlbutllon (11) gives a good approximation ' for
2vy dw, Y a beam which has been collimated at an amplitude
V2poy.  The f(z) for (8) and (9) respectively are
whereuwa = va/Aflm 1, and —e=* 'Ey(—2-1) and 2F(1, 1; ji: z1), where B is the
o0 exponential integral, and’ is a hypergeometric function
f(z) = —/ p(u) In(1 — zu) du. (which for 2, an integer, is expressible in terms of elemen-
0 tary functions in this case and subsequent cases) [4].
The asymptotic expansion ¢fz) asz — 0is z + 22 + Figure 2 demonstrates that including the tune spread in

O(z?), making the expansion of the reciprocal of Eq. (7)poth planes can give substantial improvement over the case
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where only one plane is considered. It also demonstrates 1.0 —
that removing the high-amplitude tails from the distribution
can substantially affect the amount of Landau damping one 0.8 AREEEY )
i -
obtains. 06 - 7 1
\E ] \
3 LONGITUDINAL TUNE SPREAD S04 ’ ]
e /| \
Next, consider Landau damping of either transverse or lonE 02 f \ i
gitudinal oscillations due to longitudinal tune spread. In ' ] \
this case, one computes 0.0 w 1 w \ w
- “1 oo il () d -4 -2 0 2 4
Il £ (u) d LaACL 12 Re{AQ
[l [T a2 00/}
where the symbols are defined as: Figure 3: Stability curves for transverse oscillations when
Symbol | Transverse Longitudinal ay, = 0. Vertical lines give the stable region for = +1,
f(u) A(u) d\/du and horizontal lines give the stable regionfor= —1.

Vy Qyz + May, Mma .,

Al | Q= wpy —mwrz Q= mwrs 3.2 Other Points of Interest

and compares the resultst@A(,, for the linear lattice. .
P PAG To make the problem more tractable, it was assumed that

3.1 Specific Distributions the relevant frequencies in the impedance were small com-
pared to the frequencies in the bunch spectrum. This results
in the JI™! terms in Egs. (1-6). In the more general case,
this factor is replaced by a function which depends on the

Expressions can be obtained in the cases wifen takes
on one of the two forms

e (13) frequency of the impedance. This can significantly reduce
=2 the size of the stability region. Often one considers trans-

p-1 (1 - 3) , (14) verse oscillations withi,. = 0. The coherent frequen-
H H cies one finds are virtually identical for the modes with the

These correspond to distributions in the longitudinal dissame|m/| but different signs ofn. However, the stability
placement given by Egs. (10) and (11). For longitudinaturves are mirror reflections of each other about the imagi-
oscillations, (12) is nary axis. Thus, the modes generally need to be within the
intersection of the two stability regions, as shown in Fig. 3,

—1 Z—\ml—le_l/ZE (—1/2) + f:l (Jm| — k)!z_k often preventing Landau damping due to longitudinal tune
AQy, |m|! ! = |m|! spread when there are large real tune shifts in the transverse
B modes.
—F(1,|m|+ 1; u+ |m| — 1; p2) . Co'mbining the.se f{;\cts With the qbservation that the lon-
Al gitudinal tune shift with amplitude is often very nonlinear

for the two \ respectively, where = v,/AQ,,. For the in action due to potential-well distortion, one should use a
transverse case, the expression for the exponential distrilgreat deal of caution in relying on stability diagram based
tion is the same, and for the other one obtdit{s, |m| + models for determining Landau damping due to longitudi-

Ly + |ml; pz). nal tune spread.
The asymptotic expansion of the reciprocal of (12) for
large AQ,,, is now given by 4 REFERENCES
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