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Abstract whereny andr; are the first order and the second order

The synchrotron equation of motion in quasi-isochronou.z%hase slip factors and whefe= Ap/po. For most of stor-

(QI) storage rings was transformed to a universal Weiefge rings, the truncation of the phase slip factor aufhe

strass equation, where solution is given by Jacobian elli crmisa good appro_X|mat|on. .
Using(¢, §) as conjugate phase space coordinates,where

tic functions. Scaling properties of QI Hamiltonian were | . ) ;
derived. The effects of phase space damping and the s o the rf phase angle, synchrotron mapping equations are

sitivity of particle motion to external harmonic modulation9"V€" by

were studied. We found that rf phase modulation is partic- eV _

ularly enhanced in QI storage rings. This means that then+1 = 5n+52—E[Sln(¢n+1+¢s)—Sln ¢s]—2mAbn, (2)
operators of QI storage rings should pay special attention

to rf phase modulation. Exact formula and sum rules forg¢,, ., = ¢,, + 27h(ngdns1 + 771572,,“)7 3)
resonance strength coefficients were derived. In the pres- . . .
ence of radiation damping and rf phase modulation, QI sy vhere the subsc.npt stands for .the revolutlo_n numbes
tem exhibits a sequence of period-two bifurcation enrout e rf voltage,h is the harmonic number, is the syn-

towards global chaos (instability) in a region of modula—Chronous phase, andis the damping decrement. Under

tion tune. The critical modulation amplitude for the onsepI condition,y, 0” term is not negligible and should be in

of global chaos shows a cusp as a function of modulatio‘l;JIUded' Neglect!ng the fr|ct|o.n term, the difference equa-
n can be cast into the Hamiltonian given by

tune. This cusp was shown to arise from the transition frorﬂ0
the 2:1 to the 1:1 parametric resonances. We also studied 1 , 1 5 eV .

the effect of rf voltage modulation and found that the toler = 5h100” + 2 him o™+ Sn 2 E [cos(¢+ ps) + ¢ sin ds],
ance of rf voltage modulation is much larger than that of rf (4)
phase modulation.

eV cos ¢

1 1 .
1 INTRODUCTION ~ = 24 3 _ 2
2h7]0<5 + 3h7]1<5 nPE o, (5)

Very short electron bunches, e.g. sub-millimeter in bunch ) )

length, can be important for such applications as time re- Whered = s/ serves as the time coordinate, afids
solved experiments, next generation light sources, coherdRg mean radius of the storage ring.

synchrotron radiation, and damping rings for the next linear

colliders. A possible method for producing short bunches2 PARTICLE HAMILTONIAN IN QI STORAGE

is to reduce the phase slip factpor the momentum com- RINGS

paction factora.. for electron storage rings because beang,, synchrotron storage rings operating near the

bunch width is proportional tq/|no| for small bunches in- jsqchronous condition, the small amplitude synchrotron
side the bucket. Thus a short bunch regime is equivalent {ge is given by

the condition of a smallny|. Sincen is related to the the
revolution frequency deviation (see Eq. (1)), the condition
: A s heV|ng cos ¢s|
of small|n| is also called the quasi-isochronous (QI) condi- Vs =\ "5 mp (6)
tion. Because of its potential benefit, interest in the physics 3 Eo

of I.OW a. lattice have recently grown [1'7.]' This paper is Avhere Bc and Ey are the velocity and the energy of the
review of [8, 9]. The aspects of stochastic dynamics of Ql!)eam. Using — 1.0 as the time variable and usirg, p)

system was also studied [10]. as the conjugate phase space coordinates, where
Including the velocity difference between the off mo- jugatep P ’

mentum particle and the synchronous particle, the fraction _ mAp _dx

deviation of the revolution frequency is given by T T P @ (7
Aw the synchrotron Hamiltonian for particle motion in QI stor-
— =-nd=—(no+mdé+---)6, (1) ynchrotrc P Q
wo age rings is given by
*Work supported by DOE, Grant No. DOE-DE-FG02-93ER40801, 1 9 1 9 1 3
and the NSF, Grant No. PHY-9512832. H= gP" + 52" — g7 (8)
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The “energy’FE of the autonomous Hamiltonian is a con-
stant of motion withE € [0, ¢] for particles inside the
bucket. Figure 1 shows the potential energy and the sta-
ble bucket area for the Hamiltonian.
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The action of a Hamiltonian torus is:
Figure 1: Stable bucket on the left and the potential energy. 5

2 1
The equation of motion for a particle with energyis 7 = 3V3 (e2 — 63)2 (e1 — 63)1/2 F (57 5 3;m) )
given by

(15)
2 . : . )
dz\" _ 23,2 oy ) whereF (2, —1;3;m) is a hypergeometric function given
dt 3 by
Lettingu = %t andp = z, the equation of motion is 2 1 1 5 7
6 i iR =, == 3m l—-m——=m*— —m° —
transformed to the standard Weierstrass equation: 3’ 9 4 198 512
dp(u)\ > Using the generating function
() =1 - -elo-c) @0
U x
- | Fo= [ pds, (16)
where the turning pointg; > e > es, are given by e3
1 1 the angle variable is given by:
e1 = = +cos(§), ea = = + cos(§ — 120°),
% ? 1 _ 9B _ 6 o =Qt, (@17)
=3 + cos(€ +120°), & = 3 arccos (1 — 12F). Y= o7 Ve — egQ (wlm) = Qt,

where( is the synchrotron tune given by Eq. (13) and

For particles inside th ratrix, the discriminant i : . , .
or particles inside the separatrix, the disc ant %(w|m) is the incomplete elliptic integral of the first kind

positive, i.e. A = 648E(1 — 6E) > 0, and the Weier- by-
strassp function can be expressed in terms of the Jacobia#Ven bY-

elliptic function: w dz T — es
F (w|m) :/ ——————— w=arcsiny /] —.
0 V1—msin®z €2~ €3

z(t) = es+ (ex —ez)sn’ <\/ %ﬂm) ,(11) (18)

es — €3 sin& 2.2 The bucket area
m = = — ~ <1 (12)
e —e3  sin(§ +60°) The bucket area is the area in phase space in which charged
The period and the tune of the elliptic function are giverpart'des can.be accelerated without Io;s. So the bigger the
by bucket area is, the more charged particles can be acceler-
ated. The bucket aredin (z, p) is
K(m) 2 w[v/3sin(€ + 60°)]1/2
(13) se

In the original accelerator coordinate system, the syn- Thus the bucket ared in (¢, ) is given by

chrotron tune becomes o2 2 1/2
. 6 (|l 2ThB°E
7[v/3sin(€ + 600)]1/2. Ap = 5 ( ) (eV| cos ¢S|> ' (20)

7 2
VoK (m) = »r -
In contrast to the nominal synchrotron Hamiltonian, the
Figure 2 shows)(F) as a function of energy. In par- bucket area of the QI Hamiltonian increases vd#treas-
ticular, we note that the synchrotron tune decreases to zarg rf voltageV and| cos ¢|. Note also that the bucket area
very sharply near the separatrix, which causes parametigcproportional ton|>/2/|n:|>. For a lattice with a smalll
resonances induced by the time dependent perturbationsg a proper correction fon; becomes necessary in order
overlap one another and gives rise to chaos. to provide a stable phase space for the beam bunch.
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3 DYNAMICS WITH RF PHASE MODULATION
3.1 Without damping

In the presence of rf phase modulation and without damﬁ)ép near the separatrix, thus forming a

ing, the Hamiltonian is given by

2 2 3
D x x
H 5 + 273 + wp Brcoswpyt, (21)
= Hy+ wpBxcoswnt, (22)
where the effective modulation amplitude is
ma m|

== (23)

NoVs |770|3/2

Wm = Vm/Vs is the normalized modulation tuneandv,,,

are the rf phase modulation amplitude and tune. Note that

B is greatly enhanced for QI storage rings.

3.1.1 Expansion of phase space coordinates
x can be expressed as a function #f () as follows:

z(t) =90 (J)+ Y gn(J)cos(ny),  (24)
n=1

where
K(m)—E(m
2r?  (=1)" ng"
9n - (61_63) Kz(m) 1_q2n )
L rKK M o (MNP o (M
4 € 16+8(16) +8 (16) T

. ™ €1 — €3 . .
Vo= e\l @ne=Qt (29)

3.1.2 Whisker map

Since@ (F) drops sharply near the separatrix, all the para-
metric resonances : [ satisfyingw,, ~ 7Q (E,.;) over-
stochastic layer. The
width of stochastic layer can be estimated using the whisker
map.

The energy change rate due to the time-dependent per-
turbation is given by

dHy 0Hy
=" 4+ [Hy, Hl = —w,B SWynt. 27
dt ot +[ 0, ] W Bp cos wy, t ( )
Using the separatrix orbit:
3 3sinht

Ty (t) = T 1 10 sa:t:iv

®) cosht+1° 7 ®) (cosht + 1)
(28)

the energy change in one complete revolution is given by

AE = —me/ Dsz (t — to) coswptdt

—0o0

3
6rw,, B .
= ——sing,
sinh 7wy,

(29)

where¢ = w,,to. The revolution period near the separatrix
is given by

6 144

T(E)=2 Km)~In|—-——|. 30
) =2tk () @0

Thus the whisker map is given by

3

En+1 = n Gﬂme sin ¢na (31)

sinh 7w,

144
Pnt1 én + wm In (17) . (32)
6 En+1|

Related figure might be found (Fig. 3) in [9] which is

whereK (m) andE (m) are the complete elliptic integrals omitted for limitation on space. The width of stochastic

of the first and second kind ardd’ (m) = K (1 — m).
The expansion coefficients satisfy the sum rule:

> ga(J) =2g0(1—g0)- (26)
n=1

layer, estimated from the linearized whisker map, is

3rwi B

~ 2sinh 7w,

1
E—>|<
B -

3.2 With damping

Sincegy = 1 on the separatrix, the strength of all harmonlncluding damping force, the equation of motion becomes:

ics must vanish on the separatrix.

a
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o ooz oloa o.06 o.os o. a3

=
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Figure 3: Plot ofgg, g1, g2 and the parametey. g, is
related with the 1:1 parametric resonance andavith the

2:1 resonanace. As ispredicted by sum rule, all the strenc_@ﬁ

functions go to zero at the separatrix.

2+ Ax' + 2 — 2 = —w,, B coswpnt,

(33)

where

A A _ Vs 1

_ N _ma __|m]
vs 2mEovs  |no|Y/?’

NoVs |770|3/2 '
(34)

It is worth pointing out that both the damping coefficient
A and the phase modulation amplituBeare amplified as
a result of scaling of the transformation into normalized
ase space coordinates, because for QI storage rings, the
alue of|n| is orders of magnitude smaller than the usual
storage rings.
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3.2.1 Melnikov integral method It should be noted thak; LQ represents the maxi-

The Melnikov integral method has often been applied t§'Um oscillation amplitude for which this dynamical sys-
study the chaotic transition of many dynamical systemd®M iS stable. Setting the maximum tolerable modulation
If the stable and unstable orbits from a hyperbolic fixe@mPplitude for the 1:1 parametric resonance is given by
point cross each other, the dynamical system becomes ho- 1

moclinic, which is an indicator of chaotic motion. Calcu- % VAZ W (42)
lating the distance between the two orbits perturbativel;i‘h. is al tali funtion of... for |

the Melnikov integral becomes is is almost a linear funtion af,,, for largew,,.

Bcr,l:l =

o0
D= —/ [Wim Bpsz (t — to) cos wmt— N
— 00 os L . \- A:{s .
Ap?, (t —to)] dt, (35) 2 oe : Y
wherez;, andp,, are the separatrix orbit. After integra- ' . 4
tion, it becomes: oz

0.5 2.0 2.5 3.0

3

6mw?, B sin w,,to

6A

D= m - —, 36
sinh mwy, b (36) Figure 5: X, obtained numerically for modulation ampli-
. . tude B = 0.5 with damping parameted = 0.1, 0.3, 0.5,
and the condition for global chaos is and 0.7 respectively. Solid lines correspond to the solution
A sinh 7wy, of Eq. (39) forA = 0.7 and B = 0.5. Two character-
Ber = 5t w3 (37)  istic features are (1) the threshold tune of the 2:1 paramet-
m

ric resonance decreases with increasing damping parameter

A, and (2) the appearance of very strong stop band around
wm ~ 1 for the 1:1 resonance.

3.2.3 Attractor solution for 2:1 parametric resonance
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Figure 4: B, for A = 0.05 (on the left) and ford = 0.2.
Solid line is for Melnikov integral method and solid circle
for numerical simulation.

The Melnikov integral method provides only a rough es-
timation for low modulation frequenay,, < 2. For high
modulation frequency, it overestimates the stable region éfigure 6: Plot of critical modulation amplitudB..,. for
parameter space. In short, the Melnikov integral method = 0.2 (left) and A = 0.5 (right). Solid circles of boot-
is a measure of rough estimation only for low modulatiorshape are obtained from 1:1 Eq. (39) and 2:1 Eq. (46) reso-
frequency. nances and solid circles of straight line from Eqg. (42). Thin

solid line from numerical simulation.

0.0

I
3.0

I
1.0

I
2.0 3.0 4.0 0.0 4.0

m m

3.2.2 Attractor solution for 1:1 prametric resonance The periodic attractor solution associated with the 2:1

The attractor solution for the 1:1 parametric resonance cgarametric resonance can be obtained by using the ansatz:
be obtained by harmonic linearization method. Let the
ansatz be : x(t) = Xo + Xy cos (wmt + &) +y(t).  (43)
The equation of motion fog (¢) is then given by
Yy + Ay’ +[1 — 2Xo — 2X7 cos (wmt + &1)]y = 0. (44)

Let the solution of this damped Mathieu equation be

x = Xo+ Xj cos (wmt +&1), (38)

then the following relations are obtained:

2 W
w2B? = A22 X2+ (wfn - 2X12) X2, (39) y (t) = Xi/2 (s) cos (7t+5l/z> : (45)
— Awp, The condition for Mathieu instability can also be ob-
tang; = - (40)  tained by assuming(, /» ~ e** with s > 0, i.e.

w?2

m

—/1-2X7

1 2 2w72n, w?n 2 ’ 2
Xo = 3 1—4/1-2X2). (41) AR -y -2XE ) <X (48)
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The boot-shaped curve (in solid circle) describes the ort should be pointed out that the dynamical system is in-
set of period-two bifurcation (Mathieu instability) obtainedfinitely stable for the modulation frequency©of ~ 1.
from Eq. (39) and setting equality to Eq. (46). The “straight Numerical simulation revealed that QI system is very
line” defining the maximum tolerable modulation ampli-stable against voltage modulation. Due to limited space,
tude B, is in well agreement with the curve of Eq. (42). Ininterested readers are asked to refer to [9] for detailed dis-
conclusion, the stability of QI storage ring is determineaussion and figure (Fig. 12). Like the phase modulation,
mainly by the 1:1 and 2:1 parametric resonances. Anihe Melnikov integral method also gives only a rough idea
it should be noted that the “cusp” structure is reproducedf stable region especially for low modulation frequency
from the theory of these two resonances. w, but generally overestimates the stability region for high

frequency region.

3.2.4 Chaos through period-two bifurcation

5 CONCLUSION

) | We have transformed the synchrotron equation of motion

| = in the QI regime into a universal Weierstrass equation,

* where the solution is expressed in Jacobian elliptic func-
tion. The phase space coordinates are expanded in action-
angle variables. The strength function vanishes at the cen-
ter of bucket and at the separatrix. Higher harmonic para-
metric resonances become more important near the separa-
‘ ‘ trix. The effective damping coefficient for the QI Hamil-
oe B e tonian is proportional tdn,|~'/2. And the effective mod-

Figure 7: The attractors as a function of modulation amplivlation amplitudeB is proportional ol |/|no|*/* (it is

tude B at the modulation frequenay,, = 1.975 and the particularly enhanced). For rf phase modulation, the Mel-

damping coefficientl = 0.2. nikov integral method is a measure of rough estimation of
the transition to global chaos only far,, < 2. The role of

The upper “mirror” structure corresponds to the “cusp’parametric resonances in transition to chaos was identified
structure in Fig. 4. This clearly shows chaos through a séer rf phase modulation. Far,, > 2, the stability is mainly

1.0

05 b

0.0

ries of period-two bifurcation and this phenomenon occurdetermined by the 1:1 parametric resonance.«=pr< 2,

only for w,, < 2 due to 2:1 parametric resonance. Systemthe 2:1 parametric resonance on top of the 1:1 resonance
atic patterns of bifurcation are observed. Clearly periodnakes the SFP of the 1:1 resonance unstable and bifurcate
two bifurcation can be attributed to 2:1 parametric resodMathieu instability). A sequence of period-two bifurca-
nance and occurs in the vicinity of this particular parametion enroute to global chaos is a characteristiafgr < 2.

ric resonance, i.ew,, < 2 + € wheree is a small positive The effects of rf voltage modulation of QI dynamical sys-
number. tem turns out to be insensitive.
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