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Abstract e

In spite of its importance, it has been very difficult to
estimate long-term stability of particles in repetitive sys-:
tems in a fully rigorous way. One of the main causes;
of the difficulty is the inaccuracy of the maps of the sys-
tem; while to any fixed order they can be computed eas-
ily using Differential Algebraic (DA) techniques, it has

so far not been possible to determine bounds for the re-
mainders. Another difficulty is that most methods to rigor-

ously formulate the problem lead to the need for global Ofjgre 1: Tracking pictures of a repetitive system. The left
timization of highly complex multi-dimensional objective is in particle optical coordinatesanda = p, /po, and the

functions. The Remainder-enhanced Differential Algebralﬁght is in normal form coordinates.
(RDA) method, an extension of the DA method that simul-
taneously provides rigorous bounds for the remainders, C985t. The deviation functions, which are multidimensional
solve both problems. The Taylor maps are evaluated rig-"," '

y i i 5
orously with interval remainders, using the verified ime?)olynommlsupto roughlgo0th order, consist of aboud

gral method within the framework of RDA. And rigorousfloatmg-pomtoperatlons. The irregularity of the functions

RDA global optimization allows to efficiently get bounds 2> well as the high d|meq3|onal|ty_mgke§ the question very
. troublesome for conventional optimization methods. The
on long-term stability.

sharpness of the bounds of the functions is important in or-
der to guarantee a large number of stable turns, but in real-
1 INTRODUCTION ity the functions have a very large number of local maxima.

The problem to estimate the long-term stability of weaklyTo be useful, the maxima have to be sharp to akéat’,
nonlinear systems finds its origin in the detailed study o&nd for some applications i@~ '?. Figure 2 shows the de-
the solar system. Many perturbative methods for repetitivéations from a normal form invariant circle in Figure 1 as
motion have been developed from this question. The queg-function of two angles. Interval methods give a mathe-
tion of long-term stability of particles in repetitive systemgmatically rigorous estimate, but complicated functions like
like circular accelerators and storage rings is one of ne@urs cannot avoid a severe blow-up problem, the control of
applications in this category. which is the key to get a practical estimate.

High order Taylor transfer maps of the action on phase
space describe the motion of particles very well. The dif-
ferential algebraic (DA) techniques [1] [2] [3] [4] have of-
fered a very elegant and accurate way to obtain such trans-
fer maps. Typically derivatives of up to order ten in six  1eos
variables are needed, so other methods are far from provid-
ing a robust way to study the weakly nonlinear behavior of
beams. 0

Recently, ideas of Lyapunov, Nekhoroshev and others
triggered an analysis of stability in particle accelerator
based on approximate invariants[5][6][7], and the question
of long-term stability can be re-cast into a highly compli-
cated optimization problem [6] [8]. Figure 1 shows track-_. . , .
ing pictures of a repetitive system described by a six dimef9uré 2: Deviation from normal form invariance of a
sional Taylor map in the sixth order in actual coordinate$ePetitive system.
and in normal form coordinates, where in the latter case A new technique, the method of Remainder-enhanced
the motion is seen as approximately stable. The deviatiomsfferential Algebras (RDA) [9][10][11][12], combines the
from invariance directly relate to the time for particles to bebA technique to express the model function by a Taylor
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ders. In normal form theory, it is known that if the transfer3.2 Taylor Models for addition, multiplication and intrin-
map has a converging Taylor series in normal form coordi-  sic functions
nates, the system is stable. So the sharpness of the rema]j

der term of the deviation function is the key to the probIemmﬁ;gl:e%tlognnO:;[)'irgfwfsﬁciifgﬁ;ngg ((jait((jagr?cmethTaatylgn
Thus, the RDA method now can give a practical answer t y y P Y

the question 8e expressed on a computer[9]. The key is to begin with

the Taylor model for the identity function, which is trivial,

To complete the question, the otherimportantaspectis g, then successively build up Taylor models for the total

have rigorous Taylor transfer maps to describe the weakpyntion from its pieces. This requires methods to deter-

nonlinear systems. This paper discusses the theory for rigy 1o Taylor models for sums and products from those of
orous integration of ordinary differential equations withing,o summands or factors.

the framework of RDA, which enables to obtain rigorous | . the functionsf, ¢ : [@,5] C R* — R have Taylor
Taylor transfer maps[13]. The method has been impl‘?‘hodels(Pn Lo p), (})n. I;L ). Then am-th order Tay-
mented in the code COSY INFINITY[14][15], and the pa~,, model for f - N

. for f 4 g is obviously obtained as
per covers some example calculations.
(P, + Prgy Inf + Ing)-

2 RIGOROUS COMPUTATION BY INTERVAL

An n-th order Taylor model for - ¢ is obtained as
METHODS

. . . (Pn,fg; In,f~g)7 where
An interval represents a number on computers in a rigor-
ous way, by rounding the number downwards to the lower [t = BPug Prg = Puyg) +B(Poy) Ing
bound and upwards to the upper bound. It can also rep- +B(Ppg) - Ing 4 Ing - Ing,
resent an extended domain of numbers. These two fea-

tures enable interval calculations on computers to make réith B(P) denoting a bound of the polynomi&l The key
liable statements. However, in practice, interval method§€@ of computing Taylor models for intrinsic functions is
have some severe disadvantages, which make the mere{p€mploy Taylor's theorem of the function under consider-
terval method useless for calculation of complicated function.

tions: The width of resulting intervals scales with the width

of original intervals; and a blow-up occurs in extended®.3 Taylor Models for Derivations and Anti-derivations
calculations, which can be seen in the simple exampl

(a,5] — [a,b] [ b b ] % [0,0]. Furthermore %brmanypractical problems, in particular the efficient so-
a,0| — |a, = |la— 0,0 —a ,U]. )

o v . . . ) lution of differential equations, it is actually important to
a difficulty exists in case of multiple dimensiodswith q y imp

i nts. b tational f:omplement the set of operations by a derivatipas well
cvitsr?mdp g points, because computational EXpense SCaESits inversé—!, similar as in other differential algebraic
n-.

) ) _approaches.
A new approach, the Remainder-enhanced Differential Gjen ann-th order Taylor mode(P,, I,,) of a func-

Algebraic (RDA) method, provides remedy to these disadjo, f we can determine a Taylor model for the indefinite
vantages of interval computations(9]. integral 9; ' f = [ f d/ with respect to variablé. The
operator@;lon the space of Taylor models is defined as

3 REMAINDER-ENHANCED DIFFERENTIAL o (P, 1)
ALGEBRAS ; ’

- (/ Pn—ld$27 (B(Pn_Pn—l)‘f'ln)'B(mi)) .
3.1 Taylor Models 0

A C* function f : [@,b] C R® — R can be expressed by ~ Similar to the case of the Differential Algebra on the set

the n-th order Taylor polynomiaP,, expanded around the Of Truncated Power Series, and following one of the main
reference poinfo and a remaind@n asf(f) =P, (3‘:’ _ thrusts of the theory of Differential Algebras, we will use

To) + en(Z — ). Let the intervall, be such thayz ¢  these for the solution of the initial value problem

[@,D), en (T — T) € I,,. Then )
) 270 = F(F(0), 1), 1)
VT € [a,b], f(Z) € Pu(Z—Z)+ I,.
whereF is continuous and bounded. We are interested in
Because of the special form of the Taylor remainder terfaoth the case of a specific initial conditigin as well as the

£n, in practice usually the remainder decreasegias  case in which the initial conditior, is a variable, in which
Zo|"*t. Hence, if| — #| is chosen to be small, the in- case our interest is in the flow of the differential equation

terval remainder bounf, can become very small. We say . .
a pair(P,, I,,) is ann-th order Taylor model of . 7(t) = M(7o,t).
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3.4 Example computation Then the problem of finding a solution to the differential

We made a comparison computation to show how the ne%guation is transformed to a fixed-point problem on the
pace of continuous functions

method works to obtain a rigorous bound. We used a devif
ation function from a normal form invariance used in Fig-
ures 1 and 2 to get a bound within the domain intervals

.[('104’ .Of6t]h|n eatch IS')? coordmat(; vanablles. T% get the rough We will now apply Schauder’s fixed point theorem to rig-
idea of the actual size, we made a real number scablat orously obtain a Taylor model for the flow.

;"’.‘”d"m. po"_]rtr‘:’ agd &f;pcf)mtf at eggfhs and cgnter in each Theorem (Schauder): Let A be a continuous operator
Imension. The bound ot vailes by the scanis on the Banach Spack. Let M C X be compact and con-

[-.3121185581961283E-05,0.4212429306152572E-04]. vex, and letA(M) C M. ThenA has a fixed point in\/,
i.e. there is a” € M such thatA(7) = 7.

7= A(7).

The mere interval computation gave the bound

4.2 Strategy to Satisfy the Requirements of Schauder’s
Theorem

which is rigorous but useless because of a severe blow-yg. oyr specific caseX = CP[ty, 1], the Banach space of
Now, the remain_der.bound carried by the sixth order Tayloggntinuous functions offto, ¢1], equipped with the maxi-
model computation is mum norm, and the integral operatdris continuous on

X. The process to apply Schauder’s theorem consists of
the following steps:

[-4.471335284762441 , 4.807741733133240 1

[-.5358533718862318E-05,0.5358814729171932E-05]

and it added up to a total bound of
e Determine a familyY” of subsets ofX, the Schauder

[-.3466186723563667E-04,0.5352931790602934E-04]. Candidate Sets. Each setYnshould be Compact and
convex, it should be contained in a suitable Taylor
model, and its image under should be inY.

e Using differential algebraic methods on Taylor mod-
els, determine an initial sét/, € Y that satisfies the

4 VERIFIED INTEGRAL WITH TAYLOR inclusion propertyA(My) C My. Then all require-

MODELS ments of Schauder’s theorem are satisfied, afid

Our goal is now to determine a Taylor model for the flow ~ contains a solution.
M(7o, t) of the differential equation (1). The remainder ¢ lteratively generate the sequentg = A(M;_,) for

bound should be fully rigorous for all initial conditiong i =1,2,3,... EachM; also satisfiesd(M;) C M;,
and timeg that satisfy and we havell; D M, D .... We continue the itera-

tion until the size stabilizes sufficiently.

The comparison with the estimate by the scan shows the
practical strength of the RDA method.

FoG[FOl,FOQ]:E, tG[to,tl].
. . 4.3 Schauder Candidate Sets
In particular, itself may be a Taylor model, as long as its _ o _ _
range is known to lie ir. For the first step, it is necessary to establish a family of
Since conventional numerical integrators don't providéetsY” from which to draw candidates fado. Let (P +1)

rigorous estimates for the integration error but only apd€ & Taylor model depending on time as well as the initial
proximate estimates, we have to start from scratch from t@ndition7,. Then we define the associated 8¢, ; as
foundations of the theory of differential equations[13].  follows:

4.1 Schauder’s Fixed Point Theorem Mg, ; C C°to,t1]; and for 7€ My, :
We re-write the differential equation as an integral equation mto) = rﬁ’ .
. 7?(1‘,) € P+1Vte [to,tl] Vro
F(t) = 7 + / FR@), ') dt, |F(t) —F(t")| < k|t ="V, " € [to, t1] V0.
to

In the last condition is a bound forF', which exists be-
causeF is continuous and the solutions can cover only a
finite range over the intervaty,¢;]. The last condition
means that ali¥ € M, 7 are uniformly Lipschitz with
constant:. Define the family of candidate setsas

YV =) Mz,
P+T

noting that the initial value problem has a (unique) so
lution if and only if the corresponding integral equa-
tion has a (unique) solution. Now we introduce the op
erator A : C°[to,t1] — CP[to,t1] on the space of
continuous functions frorty, ¢1] to R” via

A(f) (t) =F0+/ttF(f(t’),t’> dt'.
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4.4 Convexity, Compactness, and Invariance of Schauderaluating the right hand side in the RDA yields a lower

Candidate Sets bound forI*, and a benchmark for the size to be expected.
Let M € Y. ThenM is convex, becausé,, 7> €¢ M = Now iteratively try
aZy + (1 — a)Z € M Va € [0,1]. Jk) — ok . Jl0)

Furthermore} is compact, i.e. any sequencelifi has
a clusterpoint in}/. To see this, let,) be a sequence of yntil a computational inclusion is found, i.e.
functions inM. Then by definition of\/, (Z,,) is uniformly
Lipschitz, and thus uniformly equicontinuous:, ) is also AM (7 1) + TW)) € My (7, t) + T,
uniformly bounded, and hence according to the Ascoli-
Arzela Theorem, has a uniformly convergent subsequencgg |terative Refinement of the Inclusion
Since thez,, are continuous, so is the limit* of this sub-
sequence, and sindd is closed, the limit* is in M.
Finally, A mapsY into itself, and the uniform Lipschitz-
ness follows becausg is bounded byk.

Once a computational inclusion has been determined, the
solution of the ODE is known to be contained in the Taylor
modelM,, (7, t) + I'"). Setl(;) = I'®; since the solution

is a fixed point ofA, it is even contained in

4.5 Satisfying the Schauder Inclusion Requirement with AR (M (7, 1) + I ) for all k.
Differential Algebraic Methods e @)

The only remaining requirements for Schauder’s theoreffUrthermore, the iterates df are shrinking in size, i.e.

is to find a Taylor modeP + I such that - -
y * AR (M (7 1) + T1y) © AL (M (7, 8) + Iy)
AP+1T)c P+T. . :
(P+I)c P+ So the width of the remainder bound of the flow can be
This condition can be checked computationally using thgecreased by iteratively determining
differential algebraic operations on the set of Taylor mod- . = - -
els. To succeed with the inclusion requirement depends on Mn(758) + Ly = AM(731) + L)),
finding suitableqchoice foP andI. Furthermore, it is de-
sirable to hgver tight. Both benefit from the choice of a
polynomial P that is already “close” to the true solution of

until no further significant decrease in size is achieved. As
aresult,
Mn (7:; t) + I(k)

the ODE.
Attempt setsM* of the form is the desired sharp inclusion of the flow of the original
. ODE.
M* = Mp. ., where P*=M,(0,t),

. 5 EXAMPLES OF INTEGRATION
then-th order Taylor expansion of the flow of the ODE. It

is to be expected thdt* can be chosen smaller and smalleiin this section, we will provide two examples for the prac-

as the orden of P* increases. tical use and performance of the method discussed above.
This requires the knowledge of theth order flow The first example is to test the integration algorithm; it is

M, (7, t), including time dependence. It can be obtaine¢he motion on a circle defined by the differential equations

by iterating in conventional DA. To this end, one choose@nd initial conditions

an initial function/\/lﬁlo) (7,t) = Z, whereZ is the identity

function, and then iteratively determines &t=—y, y==, 2(0)=1, y(0)=0.

M+ A(M(k)). The integration fronD to 27 was performed using tenth
" " " order Taylor models with a fixed step size ©f36. The
Eesultlng interval inclusions based on double precision in-

In caseF is origin preservin , this process converges to th
ginp g P 9 terval arithmetic are

exact DA resultM,, in exactlyn steps.

. _'*
Now try to find I* such that +1.00000000E+00+[-.43837892E-13,+0.43837892E-13]
B B -0.63043563E-14+[- 43587934E-13,40.43587934E-13].
My + 1" C AM,, +17),

Another example is to analyze the motion of a charged
the Schauder inclusion requwement The suitable ChOI%r“de ina homogeneous d|po|e magnet. The flow of the
for I* requires experimenting, but is greatly simplified bygifferential equation over a region of initial conditions is

the observation determined. The integration was carried out through the
. dipole with the deflection radius afm over a deflection
5> 19, where angle of36 degrees with a fixed step size éfdegrees.
My (7 t) + T = A(M,,(7,t) +[0,0]). The initial conditions of four phase space variables,
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a = p/po, y andb = p, /po, are within the domain in-

tervals

[—.02,.02] x [—.02,.02] x [—.02,.02] x [~.02,.02],

and the Taylor polynomial describing the dependence of
the four final coordinate values on the four initial coordi-
nate values was determined. The order in time and initial[
conditions was chosen to be 12, and the step size was es-

timated so as to ascertain an overall accuracy below;

since no automatic step size control was utilized, the esti
mate proved conservative and the actual resulting error was

somewhat lower:

[-0.4496880372277553E-09,+0.3888593417126594E-09]
[-0.1301070602141642E-09,+0.1337099965985420E-09]
[-0.3417079805637740E-10,+0.3417079805637740E-10]
[-0.0000000000000000E+00,+0.0000000000000000E+00]

The resulting Taylor polynomials describing the de-[
pendence of final on initial coordinates were compared
with those obtained by our particle optics code COSY
INFINITY[14][15], and agreement was found. A further
check was to compare a large collection of rays through
the dipole obtained by COSY INFINITY with ones through
the results of the flow calculated by the verified integrato
For all rays studied, the difference between the final coo
dinates determined geometrically by the dipole element in
COSY INFINITY and those predicted by the twelfth or-
der Taylor polynomial were within the calculated remain

der bounds.

6 OUTLOOK

Automatic step size and order control is expected to allow
the integrator to automatically assure pre-specified accli-3]

racy goals at nearly optimal speed.

For the study of rigorous long-term stability, the devel-

o
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