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Abstract resonant impedance of Cavity 2;: RF-coupling coeffi-

A radiofrequency system with an active higher-harmoniClentfor ?awty 2.;T.L:.Iong'tUdmal rgdmﬂon damping time;
(we.p.): parasitic impedance driving coupled-bunch os-

(“Landau”) cavity may prevent coupled-bunch instabilities .y~ =~ i o
. o - cillations; andwv_g.: parasitic mode angular frequency.

and increase the bunch lifetime of an electron storage ring. .
Let w; be the resonant frequency of Cavity @; =

However, the equilibrium phase and Robinson instabilities, : o
must be avoided. An algorithm is presented for evaluatinal/.(1 + (1) the loaded quality factorz, = .Rl/(l +61)
e impedance at resonance, andthe tuning angle, de-

an active Landau cavity, and applied to the electron storage B . - .
ring, Aladdin. gFlned bytan ¢1 = 2Q1(wg — w1)/w1. This tuning angle is

the same as that used by Sands [5], and the negative of that
used by Wilson [6]. Robinson oscillations depend upon the
1 INTRODUCTION angless; + which obeytan ¢+ = 2Q; (wy + Q — wy ) /w1,

An active radiofrequency (RF) cavity with resonant fre-Vheres2 is the Robinson angular frequency. .
quency near a harmonic of the fundamental RF cavity Cavity 2 has resonant frequency nearw,, where is
may increase Landau damping of synchrotron oscillatiodss harmonic number@, = @3/(1 + () is the loaded
and increase the bunchlength [1, 2], thereby suppressiAlf@lity factor, B = R3/(1 + f2) is the impedance at
coupled-bunch instabilities and increasing the TouschdkSonance, ands is its tuning angle, given byan ¢, =
lifetime. However, the equilibrium phase and Robinson in2@2(vwy — w2)/w». Robinson oscillations involve the an-
stabilities must be avoided. To evaluate an active Land&lieS¢2+ which obeytan g5 = 2Qz(1vwy £ Q — wz)/w.
cavity, we present an algorithm similar to that for a passivE®" Poth cavities, the tuning angles are defined with the
(unpowered) Landau cavity [3]. The algorithm is applied tg°2ded value of Q.

the electron storage ring, Aladdin [4]. We use the notation L&t {2 denote the real Robinson angular frequency,
of Sands [5]. the Robinson damping rate (negative for growth), andGe

the electron charge magnitude. Our algorithm proceeds as
follows:
1. Calculatey; and,, the equilibrium phase angles of

Consider an electron storage ring where the fundamenthie bunch center in Cavities 1 and 2, dng, the peak volt-
RF cavity and active Landau cavity are each operated in ti#ge in Cavity 2. By our convention, a phase angle equals
“compensated condition” [5] with the generator current irzero for a bunch at the voltage peak. Neglecting the small
phase with the voltage. We consider a Landau cavity whictlifference between the synchronous phase and that of the
is operated to maximize the bunchlength by eliminating theunch center, the assumption that the quadratic and cubic
quadratic and cubic terms of the synchrotron potential. Thgynchrotron potential terms vanish gives [3]:
control systems which maintain the compensated condition
and maximum bunchlength are assumed to be slow com- Vi sinyy + vV sings = 0 Q)
pared to the phase oscillation period [5].

We assume that the coupling between each cavity and 5
its RF amplifier, as well as any fast RF feedback to com- Vi cosyy + v7Vrz cosy = 0. (2)
pensate beam loading, may be represented by a resistor irhe energy of an electron at the synchronous phase is
parallel with the cavity impedance. The effect of this resisynchanged by a revolution around the ring:
tance is characterized by an equivalent RF-coupling coeffi-
cient [6, 7]. ) . ] Vs = Vip1 cosihy + Vipa cos b 3)

The following values must be input to the algorithm:

Vr1: peak RF voltage in Cavity 1Q¢: unloaded quality ~ Simultaneous solution of egs. (1) - (3) yields:
factor of Cavity 1;R$: unloaded impedance of Cavity 1 at
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resonance (one-half of the “accelerator definition” of shunt P = COS*%#) (4)
impedance)f3;: RF-coupling coefficient for Cavity 1q: (1—=52)Vn

momentum compactiorif;,: revolution period;w,: gen-

erator angular frequencys: electron energyy: elec- g = tan™" (v tan 1) — 180° ()
tron energy spreadf: average beam current magnitude;

Vs: synchronous voltage;: harmonic number of Cavity Vo — sin ¢y 6
2; %: unloaded quality factor of Cavity 2?3: unloaded 2= T in (6)
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If eq. (4) cannnot be solved with; between 0 and 90  where [8, 9]:
degrees, then there is no equilibrium phase.

2. Calculate the quartic coefficient of the effective syn- ws(oy) = 1.17(Uge)/* (16)
chrotron potentiall/ (t) = at® + bt3 + ct* + ..., wheret
is the time displacement from the synchronous time. Ne- Therefore, Landau damping is overcome when:
glecting the difference between the synchronous phase and
that of the bunch center gives [3]: | Qc.p. |> (0.6)(1.72)(1.17)(Uye) /4 (17)

aewg To include the effect of radiation damping, we subtract

_ . 3 .
“T ToET, (Vrisingy +v°Vrasinga) (7)) the damping rate; ' fromIm(Qc.p.):
3. Calculate the bunchlength. In a quartic confin-
ing potential, the charge distribution is [8, 9(¢t) = , o 50, .60, B
kexp(—#4/t1). The rms bunchlengtl, = t,/1.72, obeys ~ Stc.5. = [i(090)*]"/? —ir* = Vol Z(% )

(8, 9l (18)
U We use the following criteria for the coupled-bunch in-
oy = 0.69(=2)"/4 (8) stability: First,0Q,/v/2 > ;' is required to overcome
, ¢ radiation damping. Second, Landau damping is overcome
wherelU, = %(%)2 is the “filling height.” provided that eq. (17) is obeyed, where radiation damping
4. Determine the form factors. In a quartic confinings included inQ2¢. 5. by using eq. (18).
potential, the Cavity 1 form factor obeys: 7. Determine if the equilibrium phase instability will oc-

o cur. Stability is assured if [3]:
" S5 cos(wgt) exp(—t*/t2)dt ©
b ffooo eXp(—t‘l/tﬁ)dt F1Vpysinyg + vFy Vo sinig >
The Cavity 2 form factorF5,, obeys the same formula
with wg — vwy.
5. Calculate the tuning angles of Cavities 1 and 2 for 8
operation in the “compensated condition” [5]: '

Ry F2Isin2¢; + vRy Fi1 sin 2¢y (19)

If the previous inequality is satisfied, calculate the
Robinson frequency?, which obeys [3]:

1, 2K IR, .
= tan~! 10 I
¢1 =tan" ( siney) (10) 02 = S 0P vy sing — Mk (sin2¢;_+sin2¢1)
T,E 2
_1,2FIR,y .
¢2 = tan 1(% sing) (11) VRoF21
T2 +vEF5 Vg sinapg — 2 (sin 2¢_ +sin 2¢2+)} (20)

6. Determine if the dipole longitudinal coupled-bunch

instability may be expected. Neglecting Landau and ra- This calculation requires iteration; we start by evaluating
diation damping, the coherent frequency of the dipolghe RHS with zero beam current.

coupled-bunch mode in a quartic synchrotron potential 9. Neglecting radiation damping, the Robinson damping

obeys [9]: rate obeys [3]:
02 5 =i(09Q,)? 12 4ael
c.p. = 1(082) (12) aRp = ac [FZR1Q1 tan ¢y cos® ¢y cos? ¢y
where, for resonant interaction with a cavity mode: ET,
ela +FZRQ2t g2 2 o] 21
(09,7 = ZEF, wondlon). (13 dfaatan g cos” gy cosmon] (1)

) , To include radiation damping, we add the quan’tig/1
Here,F,. ; is the form factor abe.p., given by eq. (9) to the above value af . If the resultis positive, the Robin-
with wy — we.p.. Landau damping is overcome provideds,n mode is stable. If not, the Robinson mode will be unsta-

that [9]: ble provided that Landau damping is overcome, for which
we use a criterion appropriate for a quartic synchrotron po-
| Qc.. [> 0.6Aw, (14)  tential:
where,Aw,; = w;(t,) is @ measure of synchrotron fre-
quency spread, and (t,) is the synchrotron frequency for (Q% + a2)2 > 0.6Aw;. (22)

oscillations of amplitude¢, = 1.720;. Because the fre-

quency is proportional to amplitude in a quartic potential: e evaluate a Landau cavity by performing the above
algorithm for a sequence of values of ring currefjtgnd

Cavity 2 RF-coupling62). Steps 1-4 are independentlof
Aws = wy(ty) = ws(1.7204) = 1.72w4(0) (15) andpgs, so only Steps 5-9 need be repeated.
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3 APPLICATION 1(c). The coupled-bunch instability is suppressed for the

) ) range of ring currentl() and Landau cavity RF-coupling
The above algorithm was applied to the fourth harmonlgﬁz) shown:0 < T < 0.25A, 0 < (s < 40. For small
cavity at the electron storage ring, Aladdin. For analysigg|yes of7 andg., the Robinson instability occurs, while
of the coupled-bunch instability, we considered a parasitiye equilibrium phase instability occurs at large values of
mode impedance of (wc.5.) = 0.01 M2 atwe . =6.28  anq3, Forp, = 0, there is no value of, giving stable
GHz. Input parameters aré,: 80 kV, Q7: 10000,R{:  gperation for the range of ring current shown. Ber= 2,
0.65 M2, a: 0.0335,7,: 2.96X10"" s, w,: 318 MHZ, B \a)ues of, between 8 and 23 ensure stable operation for
800 MeV,op/E: 4.8x10~*, V,: 17.4KV,v: 4,Q3: 22700, 1 .25 A, while for 61 = 8, values off, exceeding
R3: 1.4 MQ, andr.: 13.8 ms. 20 give stable operation.

For all values ofl, 3;, and;, the Landau cavity peak
voltage,Vrs, is 19.5 kV,y; = 76.6°, andys = —93.4°,
The bunchlengthg;, is 603 ps, versus 271 ps in the ab-
sence of a Landau cavity. Because the Touschek lifetime ¥ algorithm has been developed to evaluate instabilities
approximately proportional to the bunchlength, we expedf an electron storage ring with an active higher-harmonic

4 SUMMARY

the Touschek lifetime to increase by a factoroR.2 with
the active Landau cavity.
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Figure 1: Instabilities are predicted for a range of ring cur-

rents () and active Landau cavity RF-coupling valugs)
for the electron storage ring, Aladdin. : Robinson in-
stability. /: equilibrium phase instability. (a§; = 0.
(b) B1 = 2. (c) 1 = 8.

Stability plots are shown for three case8; = 0 in
Fig. 1(a), 51 2 in Fig. 1(b), andg; 8 in Fig.
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cavity. For the electron storage ring, Aladdin, an active
fourth-harmonic cavity with appropriate RF feedback is ex-
pected to suppress coupled-bunch instabilities and to in-
crease the bunchlength and Touschek lifetime by a factor
of ~2.2.
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