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Abstract

A radiofrequency system with an active higher-harmonic
(“Landau”) cavity may prevent coupled-bunch instabilities
and increase the bunch lifetime of an electron storage ring.
However, the equilibrium phase and Robinson instabilities
must be avoided. An algorithm is presented for evaluating
an active Landau cavity, and applied to the electron storage
ring, Aladdin.

1 INTRODUCTION

An active radiofrequency (RF) cavity with resonant fre-
quency near a harmonic of the fundamental RF cavity
may increase Landau damping of synchrotron oscillations
and increase the bunchlength [1, 2], thereby suppressing
coupled-bunch instabilities and increasing the Touschek
lifetime. However, the equilibrium phase and Robinson in-
stabilities must be avoided. To evaluate an active Landau
cavity, we present an algorithm similar to that for a passive
(unpowered) Landau cavity [3]. The algorithm is applied to
the electron storage ring, Aladdin [4]. We use the notation
of Sands [5].

2 ANALYSIS ALGORITHM

Consider an electron storage ring where the fundamental
RF cavity and active Landau cavity are each operated in the
“compensated condition” [5] with the generator current in
phase with the voltage. We consider a Landau cavity which
is operated to maximize the bunchlength by eliminating the
quadratic and cubic terms of the synchrotron potential. The
control systems which maintain the compensated condition
and maximum bunchlength are assumed to be slow com-
pared to the phase oscillation period [5].

We assume that the coupling between each cavity and
its RF amplifier, as well as any fast RF feedback to com-
pensate beam loading, may be represented by a resistor in
parallel with the cavity impedance. The effect of this resis-
tance is characterized by an equivalent RF-coupling coeffi-
cient [6, 7].

The following values must be input to the algorithm:
VT1: peak RF voltage in Cavity 1;Qo

1: unloaded quality
factor of Cavity 1;Ro

1: unloaded impedance of Cavity 1 at
resonance (one-half of the “accelerator definition” of shunt
impedance);β1: RF-coupling coefficient for Cavity 1;α:
momentum compaction;To: revolution period;ωg: gen-
erator angular frequency;E: electron energy;σE : elec-
tron energy spread;I: average beam current magnitude;
Vs: synchronous voltage;ν: harmonic number of Cavity
2; Qo

2: unloaded quality factor of Cavity 2;Ro
2: unloaded

resonant impedance of Cavity 2;β2: RF-coupling coeffi-
cient for Cavity 2;τL: longitudinal radiation damping time;
Z(ωC.B.): parasitic impedance driving coupled-bunch os-
cillations; andωC.B.: parasitic mode angular frequency.

Let ω1 be the resonant frequency of Cavity 1,Q1 =
Qo

1/(1 + β1) the loaded quality factor,R1 = Ro
1/(1 + β1)

the impedance at resonance, andφ1 the tuning angle, de-
fined bytanφ1 = 2Q1(ωg − ω1)/ω1. This tuning angle is
the same as that used by Sands [5], and the negative of that
used by Wilson [6]. Robinson oscillations depend upon the
anglesφ1± which obeytanφ1± = 2Q1(ωg ±Ω−ω1)/ω1,
whereΩ is the Robinson angular frequency.

Cavity 2 has resonant frequencyω2 nearνωg, whereν is
its harmonic number.Q2 = Qo

2/(1 + β2) is the loaded
quality factor,R2 = Ro

2/(1 + β2) is the impedance at
resonance, andφ2 is its tuning angle, given bytanφ2 =
2Q2(νωg − ω2)/ω2. Robinson oscillations involve the an-
glesφ2± which obeytanφ2± = 2Q2(νωg ± Ω − ω2)/ω2.
For both cavities, the tuning angles are defined with the
loaded value of Q.

Let Ω denote the real Robinson angular frequency,αR

the Robinson damping rate (negative for growth), and e> 0
the electron charge magnitude. Our algorithm proceeds as
follows:

1. Calculateψ1 andψ2, the equilibrium phase angles of
the bunch center in Cavities 1 and 2, andVT2, the peak volt-
age in Cavity 2. By our convention, a phase angle equals
zero for a bunch at the voltage peak. Neglecting the small
difference between the synchronous phase and that of the
bunch center, the assumption that the quadratic and cubic
synchrotron potential terms vanish gives [3]:

VT1 sinψ1 + νVT2 sinψ2 = 0 (1)

VT1 cosψ1 + ν2VT2 cosψ2 = 0. (2)

The energy of an electron at the synchronous phase is
unchanged by a revolution around the ring:

Vs = VT1 cosψ1 + VT2 cosψ2 (3)

Simultaneous solution of eqs. (1) – (3) yields:

ψ1 = cos−1(
Vs

(1 − 1
ν2 )VT1

) (4)

ψ2 = tan−1(ν tanψ1) − 180o (5)

VT2 = −VT1
sinψ1

ν sinψ2
(6)
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If eq. (4) cannnot be solved withψ1 between 0 and 90
degrees, then there is no equilibrium phase.

2. Calculate the quartic coefficient of the effective syn-
chrotron potential,U(t) = at2 + bt3 + ct4 + ..., wheret
is the time displacement from the synchronous time. Ne-
glecting the difference between the synchronous phase and
that of the bunch center gives [3]:

c = − αeω3
g

24ETo
(VT1 sinψ1 + ν3VT2 sinψ2) (7)

3. Calculate the bunchlength. In a quartic confin-
ing potential, the charge distribution is [8, 9]:q(t) =
k exp(−t4/t4o). The rms bunchlength,σt = to/1.72, obeys
[8, 9]:

σt = 0.69(
Uo

c
)1/4 (8)

whereUo = α2

2 (σE

E )2 is the “filling height.”
4. Determine the form factors. In a quartic confining

potential, the Cavity 1 form factor obeys:

F1 =

∫ ∞
−∞ cos(ωgt) exp(−t4/t4o)dt∫ ∞

−∞ exp(−t4/t4o)dt
(9)

The Cavity 2 form factor,F2, obeys the same formula
with ωg → νωg.

5. Calculate the tuning angles of Cavities 1 and 2 for
operation in the “compensated condition” [5]:

φ1 = tan−1(
2F1IR1

VT1
sinψ1) (10)

φ2 = tan−1(
2F2IR2

VT2
sinψ2) (11)

6. Determine if the dipole longitudinal coupled-bunch
instability may be expected. Neglecting Landau and ra-
diation damping, the coherent frequency of the dipole
coupled-bunch mode in a quartic synchrotron potential
obeys [9]:

Ω2
C.B. = i(δΩo)2 (12)

where, for resonant interaction with a cavity mode:

(δΩo)2 =
eIα

ETo
F 2

ωC.B
ωC.B.Z(ωC.B.). (13)

Here,FωC.B. is the form factor atωC.B., given by eq. (9)
with ωg → ωC.B.. Landau damping is overcome provided
that [9]:

| ΩC.B. |> 0.6∆ωs (14)

where,∆ωs ≡ ωs(to) is a measure of synchrotron fre-
quency spread, andωs(to) is the synchrotron frequency for
oscillations of amplitudeto = 1.72σt. Because the fre-
quency is proportional to amplitude in a quartic potential:

∆ωs ≡ ωs(to) = ωs(1.72σt) = 1.72ωs(σt) (15)

where [8, 9]:

ωs(σt) = 1.17(Uoc)1/4 (16)

Therefore, Landau damping is overcome when:

| ΩC.B. |> (0.6)(1.72)(1.17)(Uoc)1/4 (17)

To include the effect of radiation damping, we subtract
the damping rateτ−1

L from Im(ΩC.B.):

ΩC.B. = [i(δΩo)2]1/2 − iτ−1
L =

δΩo√
2

+ i(
δΩo√

2
− τ−1

L )

(18)
We use the following criteria for the coupled-bunch in-

stability: First, δΩo/
√

2 > τ−1
L is required to overcome

radiation damping. Second, Landau damping is overcome
provided that eq. (17) is obeyed, where radiation damping
is included inΩC.B. by using eq. (18).

7. Determine if the equilibrium phase instability will oc-
cur. Stability is assured if [3]:

F1VT1 sinψ1 + νF2VT2 sinψ2 >

R1F
2
1 I sin 2φ1 + νR2F

2
2 I sin 2φ2 (19)

8. If the previous inequality is satisfied, calculate the
Robinson frequency,Ω, which obeys [3]:

Ω2 =
eαωg

ToE
{F1VT1 sinψ1−R1F

2
1 I

2
(sin 2φ1−+sin 2φ1+)

+νF2VT2 sinψ2− νR2F
2
2 I

2
(sin 2φ2−+sin 2φ2+)} (20)

This calculation requires iteration; we start by evaluating
the RHS with zero beam current.

9. Neglecting radiation damping, the Robinson damping
rate obeys [3]:

αR =
4αeI
ETo

[F 2
1R1Q1 tanφ1 cos2 φ1+ cos2 φ1−

+F 2
2R2Q2 tanφ2 cos2 φ2+ cos2 φ2−]. (21)

To include radiation damping, we add the quantityτ−1
L

to the above value ofαR. If the result is positive, the Robin-
son mode is stable. If not, the Robinson mode will be unsta-
ble provided that Landau damping is overcome, for which
we use a criterion appropriate for a quartic synchrotron po-
tential:

(Ω2 + α2
R)1/2 > 0.6∆ωs. (22)

We evaluate a Landau cavity by performing the above
algorithm for a sequence of values of ring current (I) and
Cavity 2 RF-coupling (β2). Steps 1–4 are independent ofI
andβ2, so only Steps 5–9 need be repeated.
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3 APPLICATION

The above algorithm was applied to the fourth harmonic
cavity at the electron storage ring, Aladdin. For analysis
of the coupled-bunch instability, we considered a parasitic
mode impedance ofZ(ωC.B.) = 0.01 MΩ atωC.B. = 6.28
GHz. Input parameters are:VT1: 80 kV,Qo

1: 10000,Ro
1:

0.65 MΩ, α: 0.0335,To: 2.96x10−7 s, ωg: 318 MHz,E:
800 MeV,σE/E: 4.8x10−4, Vs: 17.4 kV,ν: 4,Qo

2: 22700,
Ro

2: 1.4 MΩ, andτL: 13.8 ms.
For all values ofI, β1, andβ2, the Landau cavity peak

voltage,VT2, is 19.5 kV,ψ1 = 76.6o, andψ2 = −93.4o.
The bunchlength,σt, is 603 ps, versus 271 ps in the ab-
sence of a Landau cavity. Because the Touschek lifetime is
approximately proportional to the bunchlength, we expect
the Touschek lifetime to increase by a factor of∼ 2.2 with
the active Landau cavity.

Figure 1: Instabilities are predicted for a range of ring cur-
rents (I) and active Landau cavity RF-coupling values (β2),
for the electron storage ring, Aladdin.| : Robinson in-
stability. / : equilibrium phase instability. (a)β1 = 0.
(b) β1 = 2. (c)β1 = 8.

Stability plots are shown for three cases:β1 = 0 in
Fig. 1(a), β1 = 2 in Fig. 1(b), andβ1 = 8 in Fig.

1(c). The coupled-bunch instability is suppressed for the
range of ring current (I) and Landau cavity RF-coupling
(β2) shown: 0 < I < 0.25 A, 0 < β2 < 40. For small
values ofI andβ2, the Robinson instability occurs, while
the equilibrium phase instability occurs at large values ofI
andβ2. Forβ1 = 0, there is no value ofβ2 giving stable
operation for the range of ring current shown. Forβ1 = 2,
values ofβ2 between 8 and 23 ensure stable operation for
0 < I < 0.25 A, while for β1 = 8, values ofβ2 exceeding
20 give stable operation.

4 SUMMARY

An algorithm has been developed to evaluate instabilities
in an electron storage ring with an active higher-harmonic
cavity. For the electron storage ring, Aladdin, an active
fourth-harmonic cavity with appropriate RF feedback is ex-
pected to suppress coupled-bunch instabilities and to in-
crease the bunchlength and Touschek lifetime by a factor
of ∼ 2.2.
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