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Abstract

With the advent of a simple matrix inversion technique,
measurement-based storage ring modeling has made rapid
progress in recent years. Using fast computers with large
memory, the matrix inversion procedure typically adjusts
up to 103 model variables to fit the order of 105

measurements. The results have been surprisingly
accurate. Physics aside, one of the next frontiers is to
simplify the process and to reduce computation time. In
this paper, we discuss two approaches to speed up the
model calibration process: recursive least-squares fitting
and a piecewise fitting approach.

1  CONVENTIONAL APPROACH

Some of the first accelerator model fitting routines were
based on numerical adjustment of model parameters to
make simulated orbit perturbation data match the
measured data [1]. Originally known as the 'GOLD'

method [2], model calibration concentrated on one
section of the lattice at a time. With the GOLD method,
the operator first identified parts of the lattice where the
model agreed with the measured data. The next step was
to vary model parameters near any discontinuities until
the model-simulated trajectories matched the
measurements. The power of the GOLD method is
twofold: (1) hardware errors are quickly identified, and
(2) once the model  fields are found optical parameters
can be predicted throughout. The same technique can
applied to both perturbation orbit and absolute orbit
measurements.

'Multi-track fitting' increases the accuracy of the
result. With multi-track fitting, a set  of orbit
perturbations made by different dipole kicks provides
many self-consistent constraints for the analysis. In effect,
with each new trajectory the particle beam makes an
independent probe of the spatial field structure of the
lattice. Multi-track fitting was initially carried out with
RESOLVE [3], a graphical interface program where the
operator can interactively adjust parameters to find model
and/or hardware errors.

 ______________________________
*work supported in part by Department of Energy
Contract DE-AC03-76SF00515 and Office of Basic
Energy Sciences, Division of Chemical Sciences.

In the limit, multi-track fitting can include the
complete corrector-to-bpm response matrix with many
parameters in the model declared as variables.

Unfortunately, the number of operations required to set-
up the calculation, the computation time, and
interpretation of the results become unwieldy in a
graphical interface environment.

To speed up the process, the problem was linearized
and statistically correlated solutions were found by matrix
inversion in a dedicated code [4]. As with many system
identification problems, the non-linear aspect was
accommodated by iterative re-expansion around the
operating point.

The matrix inversion procedure evolved into a
powerful tool that can accurately predict quadrupole
strengths, BPM gains, corrector gains, and a variety of
other model parameters [5-8]. Although the linearization
technique is robust and accurate, the turn-around time
required to make the measurements, calculate hundreds of
closed orbits, and then invert the matrix can be many
hours.

In the following sections, we describe ideas for
reducing the model calibration turn-around time. The goal
is to predict the model soon after the measurements
become available.

2  RECURSIVE LEAST-SQUARES

In order of increasing complication, some of the more
useful accelerator model calibration procedures are:

I.  Fit single orbits to verify corrector and bpm operation.

II.  Fit single quadrupoles or families in-plane.

III. Fit quadrupoles, correctors, bpms in-plane.

IV.  Fit quadrupoles, correctors, bpms, coupled-plane.

Depending on the objectives of the analysis, one or
more of these procedures might be adequate. For large
calculations, it is worthwhile to minimize the number of
correctors and bpms needed to realize an accurate fit.
Eliminating redundant measurements reduces the time to
calculate the closed orbits and to invert the sensitivity
matrix.

One way to speed up the process would be to
employ a recursive least-squares algorithm. With
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recursive least-squares, a 'batch' of data is initially
processed to arrive at preliminary least-squares answer
[9]. Subsequent data is used to update the previous model
estimate iteratively. For storage ring model calibration,
this translates into choosing a subset of orbit
perturbations from the response matrix (with appropriate
corrector phases) to yield an initial estimate for the
model. Each new set of orbit data is then used to update
the previous solution on an iterative basis.

In a fast on-line system, the model calculations of the
perturbed orbits could be carried out in parallel with the
initial measurements. Once a sufficient block of data is
acquired, the model is fit with a set of variables chosen by
the operator. The new model is used to calculate the next
set of closed orbits while more measurements made.
Depending on the goal of the analysis, subsequent
iterations could include more subtle model variables.

3  PIECEWISE FITTING

In this section, we return to the original 'GOLD' notion of
piecewise model calibration, but apply the linearized
response-matrix fitting technique. Instead of adjusting
many model parameters to agree with the measured
response matrix around the entire storage ring, suppose
we want to analyze only a part of the ring, the IP or an
insertion device for instance. Data is acquired in the same
way as before, namely, kick the beam with corrector
magnets and measure the beam deflection.

For this application, however, fewer measurements
are needed since only a subset of the model parameters
are variable. Furthermore, the time required to calculate
trajectories from the perturbed model, and the time
required to invert the sensitivity matrix is reduced. The
main difference is that (similar to the GOLD method)
each section of the storage ring is treated like a
transmission line.

Mathematically, the procedure becomes clear if we
compare to  the closed-orbit response matrix method. In
that case, the Taylor expansion of the response matrix 'C '
is

    Cmeasure  = Cmodel  + (¶C/¶k)model • Dk+ ...        (1)

The column vector of expansion variables, Dk, is
nominally a set of quadrupole strengths, but corrector
gains, BPM gains, energy shifts or other model
parameters can be added [5,8]. Any increase in the
number of variables will expand the dimensions of the
problem. Collecting known quantities in Eq. 1, the
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Figure 1:  Schematic Piecewise Fitting

parameter vector Dk is found by least-squares inversion
of the sensitivity matrix  (¶C/¶k)model .

Piecewise model calibration proceeds similarly.
Expressed in terms of linear transport equations, the
displacement Dx of a single trajectory propagates as

    
Dx
Dq

  = AR11  + BR12 + ...                (2)

where {A , B} are the cosine- and sine-like components

of each trajectory. The column vectors {R11, R12} are
elements of the linear transport matrix evaluated along
the beamline.

If we Taylor expand the R-matrix elements about the
nominal quadrupole strengths, we get an equation for
each trajectory:

(
Dx
Dq

 )measure =A[R11 
model + (¶R11/¶k)model • Dk] +

   B[R12
model + (¶R12/¶k)model • Dk] + ...  (3)

In this form, R11 and R12 contain model values for
elements of R-matrix, and the calculated matrices

¶R11/¶k and ¶R12/¶k contain the sensitivity terms.
Although it is desireable to solve for Dk directly, the
initial conditions {A, B}† and the column vectors {ADk,
BDk} appear as the variable parameters for each
trajectory.

To reduce the dimensions of the problem, and to
constrain the solution vector Dk, an iterative approach is
possible:

I.  Solve for {A , B} from Eq. 2 for each trajectory, then

II.  Solve for Dk from Eq. 3 with initial conditions
{ A , B} as determined in Step I, i.e., solve for Dk from

  
Dx
Dq

  - AR11  - BR12  = (¶R11/¶k + R12/¶k) • Dk     (4)

______________________________
†With transmission line fitting, the 'beam' can be
propagated in either direction, e.g., the initial conditions
{A ,B} can be located on the right in Fig. 1.
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for all trajectories simultaneously. As with the closed
orbit case, BPM, corrector, coupling, and energy
variations can be added to the parameter vector Dk.

The approach of iteratively solving for the initial
'launch' conditions {A ,B} and then the model parameters
Dk is used routinely in RESOLVE [10] analysis (and
independently suggested by S. Prabhakar). Other
numerical solutions are possible. The difference here is
the linearization step that facilitates the analysis.

4  SUMMARY

Two ideas are presented with the intention of speeding up
measurement based model calibration for on- line
applications. The first method, recursive least-squares
analysis, is similar to the method used in practice today,
but explores the possibility of 'updating' the solution as
new data becomes available without re-analyzing the
entire data set.

The second method draws on concepts used before
closed-orbit analysis became available, namely piecewise
model calibration. Relative to closed-orbit model
calibration for an entire storage ring, piecewise analysis
involves

     •  less calculation time for perturbed trajectories,

     •  fewer BPMs and correctors, and

     •  fewer variable model parameters.

In practice, once a corrector is kicked the full
(closed) orbit can be recorded, but only a section of the
accelerator is analyzed at any one time. The model fitting
can be 'propagated' along a transmission line, around a
storage ring, or focus on a specific region of the
accelerator. The time savings for piecewise fitting is
derived from elimination of closed orbit calculations
(only the coefficients R11(s) and R12(s) are needed), and

inversion of a smaller sensitivity  matrix. After adjusting
IP optics in a large collider, for instance, a quick check of
quadrupole strengths is possible without analysis of the
entire storage ring.
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