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Abstract elliptic cross section defined bi)” + (¥)* < 1, with

Equipartitioning and certain aspects of halo formation iy b the semi-axis of the boundary ellipse. Assuming lin-

high-current linac beams are explained in terms of cof and time-independent external focusing forces for the

lective multipole oscillations in x-y geometry. For strongeqUIIIbrIum beam ("smooth approximation”) we can write

) . . seeoarate Hamiltonians for the andy- motion:
space charge tune depression and anisotropy (emittanc

and/or focusing strength) some eigenmodes can - in prin-

ciple - become unstable leading to emittance exchange. It Hop = (92 + m2y2222)/(2m7)
is shown that for parameters of practical interest in linac oo 5 5 5 5 o 5 1
design beams can be un-equipartitioned without risk of in- oy = (Py +m 7 ryy7)/(2my) (1)

stability. The effect of (stable) mismatch core oscillations

f. i . ic Kapchinskii-
on the halo is briefly discussed. and define a generalized anisotropic Kapchinskij

Vladimirskij distribution asd-function of a linear combi-
nation of the two separate Hamiltonians:
1 INTRODUCTION

Anisotropy in conjunction with space charge effects has itsfo(x Yy DasDy) = NTvy/va (Hoz T H, — mwaa_Q

most important potential application in high-current linear 2m?mrya® 2
accelerators for protons or ions (spallation neutron sources, @
radioactive waste transmutation linacs, heavy ion fusion ) ) o o
linacs etc.). In such linac bunches one of the crucial beam Here 7" is the ratio of oscillation energies in theand
dynamics issues is to what extent deviations from “equipat. directions which can be readily written for harmonic os-
titioning” can be tolerated without risk of emittance growtrcillators asl” = (a®v7)/(b*vy). The ratio of emittances is
(for more recent discussions see Refs. [1, 2]. givenbye, /e, = (a’vs)/(b*v,). The time-independerfg
Coupling resonances leading to amplitude exchange alfeEd- 2 is @ solution of Viasov's equation siné,, o,
a familiar subject in circular accelerators, where they ar@'€ constants of the motion. For the perturbed distribution
driven by deviations from ideal focusing. It will be shownunctionf = fo(Hox, Hoy) + f1(z, Y, Pas py)e " we lin-
here that beam self-fields in the space-charge-dominat8@fize Vlasov's equation keeping only first order terms in
regime can play a similar role in an ideal linear lattice: in/1 @nd in the perturbed electrostatic potenfiaiwhich is

the presence of internal energy anisotropy between diffegXPanded as polynomialin x, y in the interior of the beam.
ent degrees of freedom initially small space charge co "he orderi of this polynomial is related to the spatial pro-

pling terms can grow exponentially due to collective installl® Of the density perturbation as is shown in Fig. 1. Itis

bility. Although our theory is derived for cylindrical x-y
geometry we assume that the basic arguments also hold for
all three degrees of freedom in a bunched beam.

Our analysis contains as a special case the KV-
“breathing” (“fourth-order”) mode of round isotropic
beams in constant focusing, which has recently been sug-
gested as a driving mechanism for halo [3]. This isotropic
“breathing” mode is, however, known to vanish if the KV
o-function distribution is slightly broadened [4]. We as-
sume that anisotropy as a driving mechanism is much more
robust with respect to the detailed form of the distribu-
tion function. While results for the isotropic case can be
expressed in terms of one dimensionless parametes,
anisotropy requires two further dimensionless parameters.

even modes odd modes

2 ANALYTICAL MODEL

Basic assumptions of the model are summarized in the fdkgure 1: Beam cross sections for second , third and fourth
lowing, whereas details of the analytical theory are presrder even and odd modes (schematic).

sented elsewhere [5] (see also Ref. [6] for an earlier refer-

ence to certain aspects of this work). The unperturbed equieted that the even modes are symmetric with respect to
librium beam is assumed to have uniform density within athe horizontal (here:—) axis. The odd modes lack this
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symmetry; in 3-d these modes correspond to a lack of ro- 4 LINAC DESIGN STABILITY CHARTS

tational symmetry around the longitudinal axis, hence the[)_( h ) ¢ high i . irabl .
are suppressed in— = simulation codes. or the design of high-current linacs it is desirable to iden-

The assumption of vanishing perturbed potential at infinf’Y '€gions in parameter space where growth rates lead-
g to emittance exchange might occur. For this purpose

ity leads to a dispersion relation for the coherent frequend h 4 eh : hich sh h
w in the form of an algebraic expression depending on th e have created charts (see Fig. 3) which show the tune

three variables to describe the equilibrium beam. For this

purpose we usey/VyO, a = Vy/Vx andn — a/b (Z 1) e le, =3 2-nd order modes - instability chart

odd: + Rew=0 -Rew>0

and characterize the eigenfrequency by the dimensionless 1,07 :
coherent frequency/v,0. The energy anisotropy is then %o 3 .
given byn?/a? and the ratio of emittances by /a. 087 OO
] JOSOOOOIN

3 EIGENFREQUENCIES > e eeses
Starting with second order modes the simplest modes are 047 JO0000000S
the well-known envelope oscillations. In addition, our anal- ] 000000008
ysis yields odd (“tilting”) modes (see also Ref. [7] where %27 00000000
a matrix formalism is used for the second order modes) ] 1000000008
which lead to a linear coupling betweenandy and can 00 02 loa os o8 1 1o
become unstable for sufficiently large anisotropy. The cou- ' _ ’ ' ' vV,

pling is caused by the space charge force corresponding to

. - e le, =3 3-rd order modes - instability chart
that of skew quadrupoles. The number of eigenfrequencies x Y Y

even: = Rew=0 -Rew>0 odd: « Rew=0 -Rew>0

increases considerably with ordedue to the anisotropy. 1.0
In Fig. 2 this is shown for thd = 3 odd mode and %o i
ve/vy = 0.8, a/b = 1.94 (e;/¢, = 3 andT = 2.4). It 087,

indicates transition to an unstable solutidmi{v > 0 with

Rew = 0) for v, /v, 0 < 0.39 with a maximum growth
rate of about 10% of the betatron frequency; note that there
exists simultaneously a damped solution withw < 0 1
not shown here. The isotropic case is completely stable. ;1
We note that for the same parametkts 4 yields already ]

0,6

0,4

16 different frequencies. For different valuescafy the 0,0 +—r—r—rr——ftrr——rr T
thresholds for onset of instability may vary considerably. 0 0,2 0,4 0,6 0,8 1 A2
T=1 Y
vIiv =08 alb=1.94 3-rd order odd mode g /e, =3  4-th order modes - instability chart
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1 Figure 3: Stability charts for second, third and fourth order
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depression, /v, versus tune ratio for a given ratio of
emittances, and corresponding marks whenever an eigen-
frequency indicates instability. Hence, at the boundaries
Figure 2: Example of frequencies for third order odd modegf the marked regions growth rates vanish. The tempera-
with 7" = 2.4 anisotropy. ture anisotropyl is given by the product of tune ratio and
emittance ratio and can be larger or smaller than unity. In

y y0
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Fig. 3 we have assumeq /¢, = 3. We note that for dif- anisotropic case (bottom, witfi = 8) shows an enhanced
ferent values of the emittance ratio $ 1) the charts are y-amplitude. The coupling does, however, not lead to a full
qualitatively similar. v, /v, is determined by these three exchange of “temperatures”. Hence, this example demon-
parameters: one finds that fbr< 1 it is the more strongly strates that anisotropy in the halo is only partially removed
depressed one of the two tunes (assuming, >> 1), by the effect of the space charge force. Obviously a more
and the less depressed f6r>> 1. Seriously large growth extensive exploration of the three-dimensional parameter
rates are found only for the non-oscillatory instabilitiesspace is required to establish decisively to what extent mis-
with Rew = 0; for completeness we also show in Fig. 3match oscillations lead to equipartitioning in the halo.

the oscillatory instabilities withRew > 0 (small marks)).

We find that forT" = 1 none of the modes are of concern;
for T > 1 first the odd modes grow unstable, whereas for
T < 1 only the even mode seems of concerns.

Linac Design: We suggest that the charts presented
above give a useful orientation not only for the x-y cou-
pling case but also for the longitudinal-transverse coupling
(z-y or z-x), which is of real interest in linac bunches. If
e1/e: > 1 we identify with « and¢ with y in Fig. 3. We
find that there is sufficient space free of instabilities right
and left of the equipartitioning lin@ = 1. ForT = 1/3 (3
times higher transverse oscillation energy), for instance, the
transverse tune depression must be below 0.6 to enter into
the unstable region of the third order even mode (and even
lower for the fourth order even mode). We find that the odd
mode instabilities come into play only far sufficiently
larger than unity. Hence we conclude that linac beams can
be moderately “un-equipartitioned” without risk of emit-
tance transfer, even for relatively strong tune depression.

In computer simulation of infinitely long coasting beams
it was recently observed that a transverse to longitudinal
temperature equilibration occurs, presumably driven by a
similar mechanism [8].

5 COUPLING EFFECT ON HALO

While the above theory describes collective behaviourigure 4: Halo development driven by second order odd
driven by the core of the beam we also expect that excittilting) mode for different anisotropy(. /v, = 1,2) and
tion of some of these eigenmodes causes a coupling in théne depression.
halo. It is thus appropriate to extend the core/test-particle
halo studies developped originally for round, isotropic 6 REFERENCES
beams [9] to anisotropic situations. _
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