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Abstract available. Edge elements with arbitrarily high order basis

Numerous advances in electromagnetic finite element anr];lll-ncnons have been described [8]'as well. :
Applications of electromagnetic FEA in accelerator

ysis (FEA) have been made in recent years. The maturitgysics are widespread. In addition to modest work at
ff i i Iculati oread.
of frequency domain and eigenmode calculations, and t ANL, there are significant efforts at SLAC and LAL.

growth of time domain applications is briefly reviewed. ! . ;
A high accuracy 3D electromagnetic finite elemen daptive mesh refinement [17] and parallel processing
gchniques [12, 17] have been applied to accelerator struc-

field solver employing quadratic hexahedral elements al . . .
quadratic mixed-order one-form basis functions will als%%rgz'eJcr;eaigﬁf;gfgsgﬁssoeseg];Z?SGﬁgngf'ons have on

be described. The solver is based on an object-oriente Time domain apolications of electromaanetic FEA are
C++ class library. Test cases demonstrate that frequency er- ! In applicall gneti

rors less than 10 ppm can be achieved using modest worrl?-pidly maturing. A number of methods for the discretiza-

stations, and that the solutions have no contamination froH?n |n.t|me hayg bgen descnped [11]. Sqme of these meth-
ods give explicit time domain formulations which have

spurious modes. The role of differential geometry and geo- T L : :
P g y g any similarities to finite difference time domain (FDTD)

metrical physics in finite element analysis is also discussep-'. . . :
ormulations. Advances are also being made in perfectly

matched layers (PMLs) and absorbing boundary condi-
tions (ABCs) for open boundaries for time domain prob-
Electromagnetic finite element analysis (FEA) is becomintgms [10, 16]. Such boundaries can effectively model ports
more popular as the accuracy and reliability of FEA codek accelerator cavities, even when they experience broad
improve. Accurate models of complicated structures hagPectrum excitations. However, despite dramatic advances
long been sought, and FEA with warped and/or unstrudd time domain electromagnetic FEA, there is still much
tured meshes has been perceived as one path to achig@k necessary before it is considered competitive with
this accuracy. Thermal and mechanical FEA has met gregPTD calculations.

success, but electromagnetic FEA has traditionally been

plagued with reliability problems. Usually these reliabil- 3 AFINITE ELEMENT FORMULATION

ity problems take the form of spurious modes (see [4] folr lcul . his FEA code is based h
many references). Fortunately, numerous workers ha vector calculus notation, this code Is based on the

made steady progress in the past decade to eliminate th % ow.ing. weak _forml_JIation of the gigenmode problem for
problems. e ectrlc fields: flrjd eigenvalues®/c? and the correspond-
I will start by briefly reviewing the current state of the "9 eigenmode fieldE € Up such that/F € U,
art in electromagnetic FEA. The state of the art is being w2
advanced by the accelerator physics community as well as / (VXF) - p~ (VXE) — —F-€eEdQ2=0, (1)
the RF, microwave, radar and antenna communities. Q ¢
The remainder of this paper is a review of my own workyyhere( is the cavity interior and the spab#; of test func-
I will (1) describe an electromagnetic FEA code similakjonsF and trial functions is
to [6] which I've written, (2) describe what I've learned

1 INTRODUCTION

about electromagnetic FEA from studying differential ge- Ug = {E € Heun(Q) : nXE = 0 0ndQ}, (2)
ometry, and (3) demonstrate the accuracy and reliability of
this FEA code. andH..1(92) is the space of vector fields aghwhich are

square integrable in the following sense,
2 THE STATE OF THE ART

A recent special issue [1] focused on numerical elec-
tromagnetic modeling, including electromagnetic FEA. It
shows that the techniques for good finite element frequendy similar formulation is based on the magnetic fields:
domain and eigenmode calculations are well establishefind eigenvalues,?/c* and the corresponding eigenmode
Edge elements are used to avoid problems with spuriofi¢ldsH € Uy such tha'G € Ug,

modes. Some reliable 3D electromagnetic FEA codes have 9

existed for some time (see [3] and [6] for example). A num- (VXG) - € H(VxH) — W_QG -pHIQ =0, (4)
ber of commercial codes [5] using edge elements are now J ¢

chrl(Q) = {E : / |VXE|2 + |E|2dQ EXiStQ. (3)
Q

*Work supported by DOE, contract W-7405-ENG-36. where the spaddy = Heun ().

0-7803-4376-X/98/$10.00 [J 1998 IEEE 1837



The cavity interior is partitioned into quadratic hexa-
hedral (27-node) elements. Curved edges and faces allo

]\'%ble 1: Quadratic 1-form basis functions for hex elements.

these elements to closely follow curved boundaries. Op a1=(1 —v)(1 —w) du ar=(1—u)vdw

each element there are 54 quadratic mixed-order 1-form ba-a2=(1 — u)(1 — w) dv ag=uv dw

sis functions, which are described in more detail below. | as=u(l —w)dv ag=(1—v)wdu
Numerical integration is used to compute the matrix as=v(1 —w)du a10=(1 — uw)wdv

components, and a simple subspace iteration scheme with®s= (1 -w(1—v)dw an=uw dv

a conjugate gradient solver is used to solve the sparse al-as=u(l —v)dw arp=vwdu

gebraic eigenvalue problem. A C++ class library handle
matrices and bookkeeping of elements, faces, edges, nod

a19— (211)— 1)@7
a20— (211)— l)ag

and basis functions. az1=(2u — 1)ag
a16=— 2u—1 aq a22= (2’0 — 1)0,10
4 LESSONS FROM GEOMETRICAL PHYSICS ar7=(2w—1)a azg=(2v—1)

ao
a25—4u(1 —u)(1
(1

aiy
a24= (2u — 1)0,12

Differential geometry has been mentioned a few times [2, —w) dv as1=u4w(l — w) dv
4] in the electromagnetic FEA literature. It is an excel-| ass=4v(1 —v) (1 — w) du asz=u4v(1 —v) dw
lent tool for understanding electromagnetic FEA. Unfortu{ as7=(1 — v) dw(l — w) du asz=4u(l —u) vdw

nately, most of the current literature continues to use vectd
calculus notation, thus obscuring the simple nature of eleg
tromagnetic FEA. In this section | discuss some things I've

rasgs=4u(l — u)

(1 —v)dw
~a29=(1 — u)4v(1l — v) dw
azp— 1-— u) 411)(1 —

w) dv

agg=v4w(l —

w) du
ass=4v(l —v)wdu
asg=4u(l — u) wdv

(

learned about electromagnetic FEA from applying a Iittle =(2v —1)ags as3=(2v — 1)as;
differential geometry. =(2u — 1)ags agq=2w— 1)asy

In the finite element method, the problem domg&iris =(2u — 1)agr a4d (2w—1)ass
divided into elements with simple shapes like tetrahedraa4 (2w— 1)ass =(2u — 1)as4
and hexahedra. Each elemént has a local coordinate =(2w— 1)agg =(2u — 1)ags
system (i.e., a master element) and a mafrom local to ag9=(2v — 1)asop =(2v — 1)ase
global coordinates. This map is typically only used to det as9=4v(1 — v) dw(l — w) du =(2u — 1)aqg
fine basis functions and to change variables to numericallyaso=4u(1 — u) 4w(l —w)dv as3=(2v — 1)aso
integrate equation (1) over.. as1=4u(l —u)dv(l —v)dw ass=2w — 1)as;

There is a close parallel between FEA and differential
geometry. In differential geometry one considers a mani-
fold (the problem domaif?) which is covered by coordi-
nate patches (the elements). Where the coordinate patchiiesilly incorrect, and thus the results of these FEA codes
overlap, the coordinate system of one patch is a differenvere usually flawed.
tiable function of the coordinates in the other patch. Differ- Now consider which basis functions are appropriate for
ential geometry does not demand that a global coordinaggectromagnetic FEA. In [7], Maxwell's equations are de-
system exist, but it accomodates one very well. scribed in terms of differential geometry and geometrical
What does one learn from this comparison? First, thghysics. In particular, it is pointed out that the electric field
local coordinates of an element are a valid coordinate syig-most naturally expressed as a 1-form, or covariant vector.
tem. The physical equations can be expressed in local ddence the appropriate basis functions for electric fields is

ordinates just like they are expressed in global coordinategiost easily expressed as 1-forms, not vectors. Recent lit-
Consider a vector basis function. There is no concerature typically shows complicated constructions for these
a vector in local coordinates. The two are related by thene writes the basis functions as 1-forms in local coordi-
transformation rule for vectors, nates (, v andw), they are simple polynomials. This is the
basis functions on simple elements.

The choice of basis functions is important, as described
wherev’ and/ are the components of the vector in theorder, with the basis for the field along a coordinate direc-
global and local coordinate basis, respectively, ajpd’)  tion, sayE,, being complete to orderin v andw, but only
coordinatest’ (i = 1,2,3). Note that early attempts at listed intable 1. The local coordinates of the hexahedra are
3D electromagnetic FEA violated this transformation rule) <« < 1,0 < v < 1and0 < w < 1, and the coordinate
ponents, and simply map these components from local to The basis functions are assembled so that the tangential
global coordinatesy’ = #°. This procedure is geomet- component of the field at an interface between elements

(5)

tual difference between a vector in global coordinates arishsis functions (see [4], [8] and [15] for examples), but if
. , spirit of FEA—the field is a linear combination of simple

LR

= Y

ot oul
in [13] and [14]. The basis functions should be mixed-
is the map from local coordinated (j = 1,2,3) to global » — 1 in u. The basis functions employed in this FEA are

They would use scalar basis functions for the vector compasis for 1-forms igu, dv anddw.
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is continuous. Thinking of the basis functions as 1-forms
makes it easy to verify that the assembly process works. 10-*| © spherey =1

The basis functions are characterized by their non-zero taﬁ‘ o cylinder,p=1,1=1
gential field on an edge or face. The first 12 basis functiong 107 °[ ® rectangulars x2x1 2 g - B
have constant tangential field along one edge. These bg—l sl
sis functions, by themselves, are appropriate for a line
mixed-order approximation to the fields. The next 12 basig 10-41
functions (.13 to az4) have linear tangential field along one

edge. The next 24 basis functions{ to asg) have non- 0 10-°} g —— magnetic field

zero tangential field on one face but no edges. Finally, the ---- electric field
last 6 basis functionsifg to a54) have no tangential field 107° 01 02 05 10
on the element boundary. h = 1/(number of elemenj$/3

To assemble global basis functions, the first 24 basis ) ) )
functions must coordinate with all elements which sharkigure 1: Relative eigenvalue error versus element size
their one edge. The second 24 basis functions must cod! three test cavities.
dinate with the element which shares their one face. The

last 6 basis functions are valid global basis functions by 10-1t
themselves, and need not coordinate with any neighboriag
elements. a2 e
In terms of exterior products\j and exterior derivatives 2 10 TS~ TR 1/
(d), equation (1) can be expressed as S 10-3f oV e
w? o N
/ dF A\p~'dE — —F A €E =0, 6 2, ~ &

@ ¢ _ B —_ MAFIA (SPARC-10) .,
where . and € are now Hodge-star operators which con-p .| MAFIA Earea adjusted) Sl ]
vert 1-forms (e.g.F and H) to 2-forms (e.g.,D and B) 10 ~~~ YAP (SPARC-20) S~
using some tensor (i.e., the permittivity and permeability 1(‘)1 1(‘32 1(‘)3 1(‘)4
tensors). Differential geometry reminds us that we can dif- CPU timet (seconds)

ferentiate in local coordinates (where the basis and their, . Relati , | .
derivatives are simple) and transform the result to globa1!9ure 2: Relative eigenvalue error versus CPU time for

coordinates (where the permittivity, permeability and metMAFIA and the FEA code YAP. The test structure is a pill-
fic tensors are usually simple). This avoids messy applicd®* cavity with radiug) = 1 and height = 1. The YAP
tions of the chain rule and extra calculation. In some cas&gSUlts are electric field calculations. The MAFIA results
it may be cost-effective to transform the tensors to locdfMPloyed a uniform grid.

coordinates and perform all of the computations in local

coordinates. . . . .
MAFIA on a pillbox test cavity. A uniform grid was em-

5 TESTS OF THE FEA CODE ployed in the MAFIA_caIcuIations in orQer to produce th_e
typical accuracy achieved by MAFIA in a more compli-

This FEA code was tested on 3 geometriess @ 2 x 1 cated structure. This FEA excels when good accuracy is
rectangular cavity; a pillbox cavity with radiys= 1 and  desired since the FEA error scalestas instead oft—1/4.
height! = 1; and ap = 1 spherical cavity. The mesh This difference is due to the discretization error (propor-
was refined in a regular manner from a coarse mesh totianal toh* for this FEA code, and for MAFIA).
fine mesh. The relative error of the computed eigenvalues The new subgrid features of MAFIA remain to be inves-
for both electric and magnetic field calculations is ShOW"'tigated. However, the error in MAFIA is at best!/2, even

in Fig. 1. Excellent accuracies (less than 10ppm error) aigith subgrids. Hence this FEA code remains competitive
achieved on a modest workstation. The error is propolgith MAFIA when accuracy is desired.

tional to h*, whereh is the element size. The numerical
eigenvalue of the spurious modes is less tr@m'2, so spu-
rious modes are well separated from the physical modes. 6 CONCLUSION
Test cases with inhomogeneously filled cavities show
similar results. The spurious modes still have zero eigeffzlectromagnetic FEA technology continues to improve. A
value, even when the dielectric properties change within 8D electromagnetic FEA code with high accuracy and with
element. The accuracy is excellent, with the caveat thab contamination from spurious modes has been demon-
sharp corners cause a significant reduction in accuracy, strated. Such codes are competitive with FDTD codes like
the mesh needs to be refined in these locations. MAFIA. Differential geometry and geometrical physics is
The execution times are reasonable when compared witiseful for understanding the features of electromagnetic
MAFIA. Fig. 2 compares this FEA code (named YAP) withFEA codes and why they work.
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