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Abstract

We generalize the Robinson stability criteria, for a charged
particle beam interacting with the radio-frequency cav-
ity resonator that is responsible for accelerating it, to the
case that the resonator is equipped with a delayed voltage-
proportional feedback.

1 INTRODUCTION

Robinson[1] gave criteria for the stability of a charged
particle beam interacting with the RF cavity resonator
that is responsible for accelerating that beam. A widely
adopted procedure[3] for high current beams, to avoid the
power-limited instability, is to reduce the apparent cavity
impedance by feedback. Inevitably, the feedback is de-
layed; and this introduces exponential terms into the system
characteristic equation. We give a general, exact, analytic
procedure for determining whether there are poles/zeros
in the right-half complex plane (RHCP); and apply the
method to find analogues of the Robinson stability crite-
ria when the resonator is equipped with a delayed feed-
back. Of course, one should determine the stability of
the delayed-feedback-resonator alone, before analysis with
beam. The beam instability criteria are explained, in phys-
ical terms, in Ref. [6] using the theory of Sacherer[2]. This
article is a precis of a more pedagogic exposition given in
References [5, 6].

1.1 Nyquist stability criterion

Let s = σ + jω be the Laplace frequency andj =
√−1.

If the system transfer functionF (s) has any poles fall
in the RHCP, then the system is unstable. We adopt the
usual convention of the complex plane that positive rota-
tions are counter-clockwise. Nyquist realized that the dif-
ference in number of poles and zeros in the RHCP is equal
to the number of counter-clockwise encirclements of the
origin by the locus of the functionF (s) ass varies along a
counter-clockwise semi-circular contour in the RHCP with
the imaginary axis as diameter. Hence, Nyquist reduced
the stability analysis to merely counting up loops about the
origin. Given that we are searching for poles, it often sim-
plest to decomposeF into a numerator and denominator.
Then, for the stability analysis, we investigate under what
conditions the denominator has zeros in the RHCP.F shall
now stand for the denominator of the transfer function.

1.2 Analytic stability criterion

We want a criterion that is easy to apply, and preferably
algebraic rather than geometric – so that curve sketching is
avoided. We divideF (s) into a real partA = <[F ] and an
imaginary partB = =[F ]. It is clear that we want the locus
of F to rotate counter-clockwise, and so we consider the

angular rotation ratedArg(F )/dω = [AB′ −A′B]/[A2 +
B2] which is positive for positive rotations. Fortunately, we
do not need to consider this quantity for all values ofω.

1.2.1 Criterion for poles and no zeros

In order to encircle the origin, the curve traced byF (ω) has
to move through the four quadrants of the complex plane;
and to do this there must be places where eitherA or B
changes sign. Hence we are interested in the rootsωA of
A = 0 and the rootsωB of B = 0 . We state conditions
so thatF has only poles but no zeros, that is criteria that
ensure the counter-clockwise encirclement of the origin.

A(ωB) × B′(ωB) > 0 and/or (1)

B(ωA) ×A′(ωA) < 0 . (2)

These conditions are sketched in the R.H.S. of Figure 1.

Figure 1: Geometric interpretation of stability criteria.

The stability criterionAB′ − BA′ > 0 does not have
to be satisfied at all the rootsωA andωB; but it must be
satisfied at those which can cause encirclement of the ori-
gin. If there is no rootωA between the nearest neighbour
rootsωB(n) andωB(n+1), then there is no encirclement.
Hence, we should only apply the stability criteria where the
rootsalternate; that is whereωB(n+1) > ωA > ωB(n)
for condition (1), or whereωA(n+1) > ωB > ωA(n) for
condition (2).

1.3 The problem of delay

By delay, we mean that the value of some quantity at time
t is related to the value of some other quantity at an ear-
lier time t − T , whereT is the delay interval. It is sim-
ple to show that the Laplace transform ofF (t − T ) is
exp(−sT )F (s) provided thatF (t) = 0 for t < T . The
Nyquist criterion is applicable to the exponential function
because it is the limit of a polynomial:exp(−sT ) =
(1 − sT/N)N asN → ∞ whereN is an integer. Suppose
we setT = 0 and find a finite set of roots. Roots which
satisfyωT � 1 will not be much shifted when we allowτ
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to become finite; we call them the ‘LF roots.’ WhenT > 0,
there will also be an infinite set of HF roots; and these are
usually periodic or approximately so; of these, usually only
a very small subset can cause encirclement of the origin.

2 RESONATOR WITH DELAYED FEEDBACK

In the neighbourhood of resonance, a cavity behaves like a
simple LCR parallel resonator. Let the original resonance
angular frequency beΩ, the shunt resistanceRs and the
time constant beτc = 1/α = 2Q/Ω whereQ is the quality
factor. Let us suppose the resonator is equipped with a de-
layed feedback of gainA/Rs. We suppose the delay inter-
val isτ . Let dots placed above a variable denote derivatives
with respect to time,t. The voltage,V , and driving current,
I, obey the equation:

V̈ + 2α[V̇ (t) + AV̇ (t − τ)] + Ω2V = 2αRs İ . (3)

For simplicity, suppose that|A| � 1 and thatA does not
cause any phase-shift. Also, for brevity, let us write2αA =
B and2αR = C. We introduce a dimensionless ‘time’
u = Ωt, and dimensionless variablesb = B/Ω, T = Ωτ
andc = C/Ω. Let primes denote derivatives with respect
to u. We form the Laplace transform to find:

[s2 + bse−sT + 1]V (s) = csI(s) . (4)

The eigen-values of the equation obtained by setting
I(s) = 0 are the natural free-oscillation frequencies of the
system.

2.1 Criteria for stability

We sets = jω and formF = A+jB. It is easiest to locate
the rootsωB of B = 0. We need to find one low frequency
root and an infinite, periodic set of high frequency roots.

2.1.1 Low frequency root

If ωB = 0 is the only root for whichA(ωB) > 0 then
we find the conditionAB′ > 0 impliesb > 0. However, if
T > π/2 then there will be two or more rootsωB for which
A(ωB) > 0; and sob > 0 is not an essential condition. In
fact,b must change sign periodically asT increases, and the
maximum allowed gainb passes through zero atω2

n = 1 or
T = (2n + 1)(π/2).

2.1.2 High frequency roots

The other roots ofB occur atωn = (2n + 1)π/(2T ) with
n = 0, 1, 2, . . . a positive integer. We find the condition:

AB′ = [1 − ω2
n + b ωn(−1)n][−b ωnT (−1)n] > 0 . (5)

This need not be satisfied for alln. However, it must be
satisfied for the two adjacentn which causeA to change
sign. The exact conditions depend on the delayT .

The inequalityΩτ = T ≤ π/2 is a special case: a
sufficient condition for stability isA(ω0)B′(ω0) > 0 with
ω0 = π/(2T ); which implies:

0 < Bτ <
[
(π/2) − (2/π)(Ωτ)2

]
. (6)

The caseT = Ωτ > π/2 is more complicated. Suppose
thatT ≈ mπ wherem is the nearest integer. We establish
the quantitiesTcrt andbmax:

Tcrt = mπ
√

1 − 1/(4m2) → mπ (7)

(−1)mbmax = π/Tcrt → 1/m for largem . (8)

Tcrt is a ‘critical’ value of the delay. BelowTcrt, the lim-
iting gain is the solution ofAm−1 = 0. AboveTcrt, b is
the solution ofAm = 0. Exactly atTcrt the limiting stable
gain is equal tobmax. Now we may state the extremal gain
conditions.

(2m−1)π/2 ≤ T ≤ Tcrt ⇒ b = (−1)m[1−ω2
m−1]/ωm−1 .

(9)
Tcrt ≤ T ≤ (2m + 1)π/2 ⇒ b = (−1)m[ω2

m − 1]/ωm . (10)

The gain stability boundary is sketched in figure 2. If the
gainb (with appropriate sign) is smaller than given in con-
ditions (9, 10) then all natural oscillations are self damped.

Figure 2: Maximum values of gain,b compatible with sta-
bility versus delayT .

2.2 Radio-frequency system

If the resonator appears as a real load when driven atΩ,
then one must take the casesT = Ωτ = mπ > Tcrt.
Hence the gain limit is given by:

(−1)m × A = Q/m = (τc/τ)(π/2) . (11)

Other choices are possible: take the conditionωrfτ =
mπ whereωrf 6= Ω is the desired drive radio-frequency.
Below transition,ωrf < Ω and soT > mπ. Let us intro-
duce the detuning angle by the definition:

tan Ψ = (Ω2 −ω2)/(2αω) = Q(Ω−ω)(Ω+ ω)/(Ωω) . (12)

Let T = mπ + (Ω − ωrf)τ ≈ mπ + (τ/τc) tanΨ and
substitute in (10).Ψ > 0 becauseωrf < Ω. In the limit of
largem, the extremal gain is approximately

A(−1)m ≈ (Q/m) [1 − (2/π)(τ/τc) tanΨ] , (13)

3 ANALOGUES OF THE ROBINSON CRITERIA

We consider small perturbations about the steady state, and
develop the analysis in terms of the transfer functions for
phase and amplitude modulations of the carrier frequency.
Let us suppose the gain,A, has been chosen consistent with
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the delayτ . The drive current is the sum of a generator
component and the fundamental beam current component
I0
b = jI0

b ejΦb . It is customary[4] to defineI0
V = V 0/R and

introduce the ratioYb = I0
b /I0

V . Let w = ωrfτ + θ where
θ is a fixed arbitrary phase-shift in the feedback. We define
the synchrotron frequencyΩs sansthe usual trigonomet-
ric factor and also defineω2

s = Ω2
s cosΦb. Using the beam

response equations of References[4, 5], for small dipole os-
cillations of the bunch about the steady state phase,Φb, the
system matrix is given by:[

m11 m12 −Yb cosΦb

m21 m22 +Yb sin Φb

−Ω2
s sin Φb −Ω2

s cosΦb s2 + Ω2
s cos Φb

][
av

φv

φb

]
= . . .

m11 = +m22 = 1 + sτc + Ae−sτ cosw (14)

m12 = −m21 = Ae−sτ sinw + tanΨ . (15)

The natural frequencies are obtained by setting the determi-
nant equal to zero, leading toc4s

4+c3s
3+c2s

2+c1s+c0 =
0 where the polynomial coefficients contain exponential
terms. We sets = +jω to findF = A + jB.

3.1 Low frequency roots

B has three low frequency roots.

3.1.1 Root atω = 0

The quantityA(0)B′(0) is is easiest to interpret whenw =
mπ andm is even, in which case the criterion:

[(1 + A)2 + tan2 Ψ−Yb tanΨ]× [τc − Aτ ] > 0 . (16)

We know Aτ < τc; and so it follows thatYb tanΨ <
(1 + A)2 + tan2 Ψ is a necessary condition for stability.
This is formally identical with Robinson’s ‘power limited’
stability criterion; and this was anticipated because delay
cannot change the nature of a d.c. instability – for d.c. sig-
nals, an arbitrarily long delay does not change the signal.

3.1.2 Roots at±ωs

ωs is an exact root ofB whenw = mπ. Let us evaluate

A(ωs)B′(ωs) = 4Ω2
sYb[1 + (−1)mA cos(ωsτ)]ωs

× [ωsτc − (−1)mA sin(ωsτ)] tanΨ . (17)

This quantity can become negative, indicating instability,
in a variety of ways. Supposem is even. Without feed-
back, the real part of the cavity impedance is positive (i.e.
dissipative) at synchrotron upper and lower sidebands, and
the difference is proportional toωsτc × tanΨ. With feed-
back, the real part of the impedance at the sidebands be-
comes proportional to[ωsτc − (−1)mA sin(ωsτ)]× tan Ψ.
However, from the stability of the cavity without beam we
know

τc > Aτ ≥ A sin(ωsτ)/ωs . (18)

Hence, from (17) we conclude the stability conditions:

tanΨ > 0 , (19)

1 + A cos(ωsτ) > 0 . (20)

The inequality (19) is the first Robinson criterion and it tells
us to detune the cavity in the correct sense:Ω > ωrf when
below transition energy.

Suppose feedback phasing is adjusted so that the real part
of the at the drive frequency is positive. For sufficiently
long delay and high synchrotron frequency, one finds that
at the upper and lower synchrotron sidebands of the drive
frequency, the real part of the impedance looks like aneg-
ativeresistance. Condition (20) determines if this situation
occurs; from which we concludeωsτ < π/2 or ωs < ω0.

3.2 High frequency roots

To simplify matters we shall consider the case of very large
gain, that is|A| � 1. Theωn = (2n + 1)π/(2τ) wheren
is an integer are exact roots ofB = 0 if w = mπ. When
ω = ωn andw=mπ, then

A = −Ω2
sYb tanΨ + (ω2

n − Ω2
s cosΦb) ×

× [A2 − 2(−1)m+nAτcωn + (τcωn)2 − tan2 Ψ] (21)

B′ = 2Aτ(−A + (−1)m+nτcωn)(ω2
n − Ω2

s cosΦb) .(22)

To simplify, letm be even. The transfer functions are only
valid for small modulation frequencies and so we setn = 0.
Now ω0 > ωs andA < ω0τc from Eqn. (11), and so:(

Qπ

Ωτ
− A

)2

> tan2 Ψ +
(Ωsτ )2Yb tan Ψ

(π/2)2 − (Ωsτ )2 cos Φb
. (23)

This condition implies that the maximum, stable feedback
gain is reduced under conditions of heavy beam loading.
The condition is only accurate under the condition of long
delay: Ωτ � π/2. If relation (23) is violated, then a co-
herent oscillation occurs at the frequencyω0 = π/(2τ) be-
cause the dipole mode frequency is shifted away from the
nominal synchrotron frequency by the very large reactance
at the sidebands of the carrier that occurs if|τcω0 − A| ≈
tanΨ. Essentially, the reactive impedance raises the co-
herent frequency to a point high enough that it can oscillate
in synchronism with a spontaneous high frequency oscilla-
tion of the resonator-with-feedback. Despite the fact that
the feedback is in-phase at the carrier, at this sideband fre-
quencyω0 the feedback is in quadrature so making the ef-
fective impedance look very reactive.

Reference[5] generalizes all results to the case of arbi-
traryw andθ andA.
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