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Abstract angular rotation raté Arg(F)/dw = [AB' — A'B]/[A% +

We generalize the Robinson stability criteria, for a chargego]r:'g?'ﬁgéz ?gi'gxg.chraﬁ.ss't've;r?tt.?t'?;rsél::c’:luZzﬁly’ we
particle beam interacting with the radio-frequency cav- ! IS quantity vaiu

ity resonator that is responsible for accelerating it, to th 21 Criterion f | q
case that the resonator is equipped with a delayed voltage-—" riierion for poles and no zeros

proportional feedback. In order to encircle the origin, the curve traced®fw) has
to move through the four quadrants of the complex plane;
1 INTRODUCTION and to do this there must be places where eithesr B

Robinson[1] gave criteria for the stability of a chargeochanges sign. Hence we are interested in the rﬁogt.saf
particle beam interacting with the RF cavity resonator® — U @nd the rootsu; of B=0 . We state conditions
that is responsible for accelerating that beam. A widel?o thati” has only poles bl.Jt no zeros, that is Cme”? -that
adopted procedure[3] for high current beams, to avoid tHensure the counter-clockwise encirclement of the origin.
power-limited instability, is to reduce the apparent cavity
impedance by feedback. Inevitably, the feedback is de- ,
layed; and this introduces exponential terms into the system B(wa) x A'(wa) < 0. (2)
characteristic equation. We give a general, exact, analyti
procedure for determining whether there are poles/zerJ

A(wg) x B'(wg) > 0 andlor (1)

ese conditions are sketched in the R.H.S. of Figure 1.

in the right-half complex plane (RHCP); and apply the B B

method to find analogues of the Robinson stability crite-

ria when the resonator is equipped with a delayed feed- B(wy)A"(w,)>0 0>(To) [v("e) @

back. Of course, one should determine the stability of ¢ RS = T 2
the delayed-feedback-resonator alone, before analysis with & Ve ui;/ / .
beam. The beam instability criteria are explained, in phys- = T g A = g 4
ical terms, in Ref. [6] using the theory of Sacherer[2]. This \j/ e @é @g L %
article is a precis of a more pedagogic exposition given in o<(o) (") B(w )4 (w,)<0
References [5, 6].

Conditions for a zero Conditions for a pole

1.1 Nyquist stability criterion

Lets — o + jw be the Laplace frequency afid= v/—1. Figure 1: Geometric interpretation of stability criteria.

If the system transfer functiod'(s) has any poles fall . L , ,
in the RHCP, then the system is unstable. We adopt the 1€ stability criterionAB’ — BA" > 0 does not have

usual convention of the complex plane that positive rotal® Pe satisfied at all the rooisy andwy; but it must be

tions are counter-clockwise. Nyquist realized that the difSatisfied at those which can cause encirclement of the ori-
ference in number of poles and zeros in the RHCP is equdl"- !f there is no rootu, between the nearest neighbour
to the number of counter-clockwise encirclements of thE20tSwn(n) andwp(n+1), then there is no encirclement.
origin by the locus of the functio®'(s) ass varies along a Hence, we should qnly apply the stability criteria where the
counter-clockwise semi-circular contour in the RHCP wit{otsalternate that is whereop(n+1) > wa > wp(n)

the imaginary axis as diameter. Hence, Nyquist reducd@ condition (1), or wherev(n+1) > wp > wa(n) for

the stability analysis to merely counting up loops about th‘éond'tlon ).

origin. Given that we are searching for poles, it often sim-

plest to decomposg into a numerator and denominator.1-3 The problem of delay

Then, for the stability analysis, we investigate under whagy delay, we mean that the value of some quantity at time
conditions the denominator has zeros in the RHEEBhall t is related to the value of some other quantity at an ear-
now stand for the denominator of the transfer function. Jier time ¢t — 7", whereT is the delay interval. It is sim-

ple to show that the Laplace transform B{t — T) is
exp(—sT)F(s) provided thatF'(t) = 0 fort < T. The
We want a criterion that is easy to apply, and preferabl{yquist criterion is applicable to the exponential function
algebraic rather than geometric — so that curve sketchingliecause it is the limit of a polynomialexp(—sT) =
avoided. We divide"(s) into areal partd = R[F]andan (1 — sT/N)Y asN — oo whereN is an integer. Suppose
imaginary part3 = S[F). Itis clear that we want the locus we set?’ = 0 and find a finite set of roots. Roots which
of F' to rotate counter-clockwise, and so we consider thsatisfywT < 1 will not be much shifted when we allow

1.2 Analytic stability criterion
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to become finite; we call them the ‘LF roots.” Wh&n> 0, The cas&l’ = Q7 > 7/2 is more complicated. Suppose
there will also be an infinite set of HF roots; and these arthatT =~ mm wherem is the nearest integer. We establish
usually periodic or approximately so; of these, usually onlyhe quantitied.,.; andb, ..

a very small subset can cause encirclement of the origin.
Tt = mmy/1 —1/(dm?) —mr (7)
2 RESONATOR WITH DELAYED FEEDBACK (—1)™bmes = 7/Towe — 1/m forlargem . (8)

In the neighbourhood of resonance, a cavity behaves Ilkeqam is a ‘critical’ value of the delay. Below.,,, the lim-

simple LCR parallel resonator. Let the original resonanqﬁng gain is the solution ofd,, , — 0. Above T, b is
. m— - . cris

angular frequency b€, the shunt resistancB; and the ¢ solution ofA,, = 0. Exactly atTl.. the limiting stable

time constant be. = 1/a = 2Q/Q whereQ is the quality  gain is equal td,,... Now we may state the extremal gain
factor. Let us suppose the resonator is equipped with a depnditions.

layed feedback of gaid/R,. We suppose the delay inter- . )

valis. Letdots placed above a variable denote derivativé€” —)7/2 < T < Tere = b= (=1)" [l —wp 1] /wm-1 '
with respect to timet. The voltage)’, and driving current, B mr 2

I, obey the equation: Tere <T < (2m+D7/2 = b= (-1)"[wp — 1] /wm . (10)

. . . ) ) The gain stability boundary is sketched in figure 2. If the
V+2aV(t) + AV(E—7)] + @V = 2aR;1. (3) gainb (with appropriate sign) is smaller than given in con-
For simplicity, suppose tha#| > 1 and that4 does not ditions (9, 10) then all natural oscillations are self damped.
cause any phase-shift. Also, for brevity, let us weited =

15 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B and2aR = C. We introduce a dimensionless ‘time’ = \‘
u = Qt, and dimensionless variables= B/Q, T = Qr € 107 i
andc = C/Q. Let primes denote derivatives with respect Z 054 | X L
to u. We form the Laplace transform to find: £ LN A
5 00 < -
[s2 4+ bse T + 1]V (s) = esl(s) . 4 2 1\ / e
054 | / r
\ /

The eigen-values of the equation obtained by setting o |
I(s) = 0 are the natural free-oscillation frequencies of the ‘ !
system. —15

T 1T 1T 1T T 1T 1T 1T T T T T T T T TT
01234567 891011121314151617181920
T/(m/2)

2.1 Criteria for stability

) ) , . Figure 2: Maximum values of gaih,compatible with sta-
We sets = jw and formF' = A+ jB. Itis easiest to locate bility versus delayr".

the rootsup of B = 0. We need to find one low frequency
root and an infinite, periodic set of high frequency roots. 2 2 Radio-frequency system

2.1.1 Low frequency root If the resonator appears as a real load when driven, at
then one must take the cas€s= Qr = mnr > T,..

If wg = 0 is the only root for whichA(wg) > 0 then Hence the gain limit is given by:

we find the conditiondB’ > 0 impliesb > 0. However, if

T > 7/2 then there will be two or more roatss for which ()™ x A = Q/m = (r./7)(x/2). (12)

A(wp) > 0; and sob > 0 is not an essential condition. In

fact,b must change sign periodically aancreases, andthe  Other choices are possible: take the conditigpr =

maximum allowed gait passes through zeroaf = 1or mm wherew,; # Q is the desired drive radio-frequency.

T = (2n+1)(7/2). Below transitionw,s < € and soI" > mm. Let us intro-
duce the detuning angle by the definition:

2.1.2 High frequency roots fan ¥ = (92 — )/ (200) = QO — )+ w)/ (W) . (12)
The other roots oB occur atw,, = (2n + 1)7/(2T) with

n=0,1,2,...apositive integer. We find the condition: ~ LetT = mm + (Q — wif)T = m7 + (7/7.) tan ¥ and
, ) substitute in (10)¥ > 0 becausev,; < 2. In the limit of
AB' = [1 —w;, + bwn(—1)"][-bw,T(-1)"] > 0. (5) largem, the extremal gain is approximately

Thl; peed not be SatISf.Ied for ai[ However, it must be A(=1)™ ~ (Q/m)[1 — (2/7)(r/7.) tan®] ,  (13)
satisfied for the two adjacent which causeA4 to change
sign. The exact conditions depend on the ddlay

The inequalityQr = T < =w/2 is a special case: a
sufficient condition for stability isd(w)B’(wo) > 0 with ~ We consider small perturbations about the steady state, and

3 ANALOGUES OF THE ROBINSON CRITERIA

wo = 7/(2T); which implies: develop the analysis in terms of the transfer functions for
phase and amplitude modulations of the carrier frequency.
0< Br < [(7/2) — (2/m)(r)?] . (6) Letussuppose the gaid, has been chosen consistent with
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the delayr. The drive current is the sum of a generatoiThe inequality (19) is the first Robinson criterion and it tells
component and the fundamental beam current componeni to detune the cavity in the correct ser@es> w,¢ when

I) = jI0e/®. Itis customary[4] to defing), = VO/Rand  below transition energy.

introduce the ratid;, = ) /I},. Letw = wy7 + 6 where Suppose feedback phasing is adjusted so that the real part
0 is a fixed arbitrary phase-shift in the feedbaqk. We defingf the at the drive frequency is positive. For sufficiently
the synchrotron frequendy, sansthe usual trigonomet- ,ng dejay and high synchrotron frequency, one finds that
ric factor and also define; = €); cos &;. Using the beam ,; 0 upper and lower synchrotron sidebands of the drive

response equations of References[4, 5], for small dipole os- . .
cillations of the bunch about the steady state phésgthe fsrequency, the real part of the impedance looks likeg-

system matrix is given by: ativeresistance.'Condition (20) determines if this situation
occurs; from which we concludes™ < 7/2 or ws < wo.
mi1 mis —Y} cos &y Ay
ma1 2o +Y; sin @, ] [ b ] — ... 3.2 Highfrequency roots
—2sin®, —Q2cos®, %+ Q2 cos Dy o

To simplify matters we shall consider the case of very large
mi1 = +mas = 1+ s7.+ Ae *"cosw (14) gain, Fhat igA| > 1. Thew, = (2n + 1)w/(27) wheren
Mis = —mg1 = Ae *Tsinw4tan®. (15) 'San integer are exact roots Bf= 0 if w = mm. When
w = w,, andw=mm, then
The natural frequencie; are obtained by setting the determiA = —0%ytan¥ + (w2 — Q2cos®y) x
nant equal to zero, leadingt@s*+c3s®+cas®+c1s+co = A2 _o( 1y g 5 2 9 (21
0 where the polynomial coefficients contain exponential ) x [A7 = 2(-1) TeWn + (Tcu;n) —Qtan 1(21)
terms. We set = +jw to find F = A + jB. B = 2A7(—=A+ (—1)"" " rewn) () — Q7 cos @) (22)
To simplify, letm be even. The transfer functions are only

3.1 Low frequency roots valid for small modulation frequencies and so werset 0.

B has three low frequency roots. Now wy > ws andA < woT, from Egn. (11), and so:

2 Q.7)%Y, tan ¥
3.1.1 Rootat =0 (g—: - ) > tan® ¥ + (W/Q()g I)(QiT);COS o, @3
The quantity4(0)B'(0) is is easiest to interpretwhen= This condition implies that the maximum, stable feedback
mm andm is even, in which case the criterion: gain is reduced under conditions of heavy beam loading.

The condition is only accurate under the condition of long
delay: Qr > = /2. If relation (23) is violated, then a co-
We know Ar < 7.; and so it follows thatVy tan ¥ < herent oscill.ation occurs at the frequem@/: 7 /(27) be-

(1 + A)? + tan® ¥ is a necessary condition for stability. €aUS€ the dipole mode frequency is shifted away from the
This is formally identical with Robinson’s ‘power limited” Nominal synchrotron frequency by the very large reactance
stability criterion; and this was anticipated because deldt the sidebands of the carrier that occursityy — Af ~
cannot change the nature of a d.c. instability — for d.c. sigﬁm‘l’- Essentially, the reactive impedance raises the co-

nals, an arbitrarily long delay does not change the signal. erent frequency to a point high enough that it can oscillate
in synchronism with a spontaneous high frequency oscilla-

3.1.2 Roots attw, tion of the resonator-with-feedback. Despite the fact that

the feedback is in-phase at the carrier, at this sideband fre-

quencywy the feedback is in quadrature so making the ef-

Alws)B (ws) = 492Y3[1 4 (—1)™ A cos(wsT)] ws fective impedance look very reactive. .
X [weTe — (—1)™ A sin(wsr)] tan ¥ . (17) Reference[5] generalizes all results to the case of arbi-

’ ’ traryw andd and A.

This quantity can become negative, indicating instability,

ina \?ariety )(;f ways. Supposg is even. With%ut feed- ’ 4 REFERENCES
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