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Abstract

A digital signal processor is implemented to control the
resonant frequency of the RFQ prototype in
APT/LEDA. Two schemes are implemented to
calculate the resonant frequency of the RFQ. One uses
the measurement of the forward and reflected fields.
The other uses the measurement of the forward and
transmitted fields. The former is sensitive and accurate
when the operation frequency is relatively far from the
resonant frequency. The latter gives accurate results
when the operation frequency is close to the resonant
frequency. Linearized algorithms are derived to
calculate the resonant frequency of the RFQ efficiently
using a fixed-point DSP. The control frequency range is
about 100kHz for 350MHz operation frequency. A
frequency agile scheme is employed using a dual direct
digital synthesizer to drive the klystron at the cavity’s
resonant frequency (not necessarily the required beam
resonant frequency) in power-up mode to quickly bring
the cavity to the desired resonant beam frequency.  This
paper will address the algorithm implementation and
error analysis, as well as related  hardware design
issues.

1  INTRODUCTION

Resonant control of the RFQ and superconducting RF
cavities requires accurate measurement of the RF cavity
resonant frequency. For a digital implementation of the
resonant control system in APT/LEDA, an efficient and
accurate algorithm is needed to provide a real time error
signal to the cavity water cooling system within a
desired bandwidth. The algorithm proposed in this paper
utilizes the vector measurement of the forward,
reflected, and transmitted fields to calculate the complex
load impedance or admittance. Knowing the complex
load impedance and the loaded quality factor Q of the
cavity, the discrepancy of the operating frequency and
the resonant frequency can be derived accordingly. A
simple linear relationship between the imaginary part of
the load admittance and error signal (difference between
operating frequency and the cavity resonant frequency)
is derived by linearizing a  general quadratic relation
between the imaginary load admittance and resonant
frequency.  Numerical simulations reveal that the

difference between the full solution and approximated
linear solution is negligible  within the frequency range
we are interested (f0 ± 100Hz).

2  SYSTEM IMPLEMENTATION

Figure 1 is a block diagram of the resonant control
module for APT/LEDA.
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Figure 1. Block Diagram of Resonant Control Module

The RF frequency is 350MHz for APT/LEDA. The
LO is 300MHz. The A/D converter clock is 40MHz.
Since the IF frequency is 50MHz, the output of the A/D
converter is a data stream consisting of the repeat pattern
of measured I, Q, -I, and -Q components. The output of
the A/D converter is fed into a multiplexer that switches
every other sample into two parallel paths to separate the
I and Q components. Then, each channel of the data
stream is multiplied by +1 or -1 to remove the
alternating sign accordingly. The outputs are the
measured I and Q components of the input RF signal.
The major advantage of the above described digital I/Q
demodulation scheme is the single analog signal path for
both I and Q components that ensures a perfect gain-
matching between the I and Q signals. Secondly, since
the sampled signal is at the IF frequency (50MHz),
analog DC offsets and drifts do not affect the accuracy
of the digital I/Q demodulation. A dual DDS  is used to
generate two off-phase error correction sine waves for
I/Q modulation in the frequency agile mode.
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  3  RESONANT CONTROL ALGORITHM
The resonant control algorithm of APT/LEDA is based
on the vector measurement of the forward, reflected or
transmitted fields.  Figure 2 depicts a simplified
transmission  model for a cavity driven system. The
complex load impedance of the cavity is  ZL .  The

transmission line impedance is Z0 . The forward and

reflected field are measured at  z1 and z2 respectively,
which are between z = 0  and  z l= .  Here l  is the
length of the transmission line from klystron to cavity.
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Figure 2. Waveguide with a length of L and load ZL .

Using the transmission theory[1], we can show that the
load impedance is related to the measured forward and
reflected fields as
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From (1), we have
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For a parallel RLC resonant circuit, YL  is
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Eq. (5) is used to determine the difference between the
resonant frequency  and the operation frequency.

4 SIMULATION RESULTS

To verify the validity of the algorithm, a simulation was
conducted using Eq. (5) and Eq. (1) to get the error
signal vs. Frequency with a random noise added to the

measured fields(20dB Signal-to-Noise Ratio). The
results are shown in Figure 3. This result shows that Eq.
(5) together with Eq. (1) gives a satisfactory result
within the frequency range we are interested.
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Figure 3. The result with noise in the measurement.

In figure 3, the correction frequency is obtained
when the SNR (Signal-to-Noise Ratio) of the measured
field is 20dB. Notice that the perfect gain-matching in
our digital I/Q demodulation scheme ensures the equal
effect of noise on both I and Q channels. Thus, we can
represent the measured field as ( )1+ r F , where r  is

noise, F  is the complex field without noise.
Mathematically, this means that the noise correlation
coefficient between  two channels (I and Q) is one.

One important feature in Figure 3 is that the
correction frequency never crosses zero on both sides of
the resonant frequency f0. This indicates that no
ambiguity can exist regarding the sign and/or direction
the correction frequency required. Next we investigated
the correlated and uncorrelated  I/Q noise on robustness
of the algorithm. Here, we assumed that the SNR of the
measurement is only 3dB. Figure 4 is for a completely
correlated noise case.  Figure 5 is for a completely
uncorrelated noise case. It is very important to notice
that the correction frequency never crosses zero on both
sides of the resonant frequency for the case with the
completely correlated noise for I/Q components. This
means that when we implement this algorithm in this
case, we always have a correct sign for the error signal.
In contrast, the correction signal for the completely
uncorrelated case  back does across zero on both sides of
the resonant frequency, potentially leading to ambiguity.
 As mentioned before, the digital I/Q decomposition
scheme implemented in our system ensures the perfect
gain-matching for the I and Q channels which results in
the completely correlated noise for the I and Q channels.
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Therefore, the algorithm applied to our system is very
robust.
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Figure 4. Result for the correlated noise case.
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Figure 5. Result for the uncorrelated noise case.

5 OTHER CONSIDERATIONS

Here, all formulas are derived based on the forward and
reflected fields. Similar formulas  can also be derived
from the forward and transmitted fields. Mathematically,
they are equivalent. But some practical issues should be
addressed when we decide which set of formulas to use
in the system implementation. One limitation comes
from the finite resolution of  the A/D converter. For a
12bit A/D converter, as  used in our system, the dynamic
range of measurement is around 60dB. However, due to
some instrumentation limitations, such as isolation of the
directional coupler, the dynamic range of the measured
signal could be 10 to 20 dB lower than the theoretical
dynamic range of the A/D converter. Given the above
consideration we don't want the magnitude of the

measured field to change dramatically  during normal
operation.
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Figure 6. Magnitude of the reflection and transmission
coefficients vs. frequency.

 Figure 6 depicts the magnitude of the reflection
and transmission coefficients for an equivalent RLC load
with   Q = 3000 and  f 0 350= MHz. From Figure 6,

we can see that using the reflected field algorithm is
good when the frequency is relatively far from resonance
but the accuracy of the measurement will deteriorate
when the frequency is close to resonance. However, on
the other hand, the accuracy of the transmitted field
algorithm is higher when the frequency is close to
resonance and lower when the frequency is away from
resonance. Based on the above observation, both
algorithms are implemented in our system. The reflected
field algorithm will be activated when the frequency is
relatively far from resonance and the transmitted field
algorithm will be activated when the frequency is close
to resonance.

6 CONCLUSIONS

An efficient and simple algorithm that is suitable
for the implementation in a digital signal processor is
proposed. The simulation results reveal that the
algorithm is very robust when implemented with the
digital I/Q demodulation scheme used in our system.
The algorithm gives a good result with a noise level at
20dB SNR.

REFERENCES

[1] Cheng, K.C., ‘Field and Wave Electromagnetics’,
Second Edition,  Addison-Wesley, 1989.

[2] Ziomek, C. and Corredoura, P., ‘Digital I/Q
Demodulator’,   PAC’95,  1995.

2343


