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Abstract

An orbit correction algorithm is developed to achieve the
following goals for the CEBAF accelerator at Jefferson
Lab.:  1). Preprocessing of orbit input to account for esti-
mated misalignment and monitor errors.  2). Automatic
elimination of blind spots caused by response matrix de-
generacy. 3).  Transparency of exception handling to in-
terchangeable generic steering engines.  4). CEBAF-
specific demands on control of injection angle, path
length, orbit effects on optics, simultaneous multiple pass
steering, and orbit control at un-monitored locations.  All
of the above can be accomplished by the introduction of
virtual monitors into the processed input orbit, whose
theoretical basis is to be discussed in this report.  Imple-
mentation of all or part of these features and operational
experience during the CEBAF variable energy runs will
also be discussed.

1  INTRODUCTION

At Jefferson Lab the particular optics configuration and
operation constraints impose unique demands on the orbit
correction program as elaborated in the abstract.  These
demands can be met with a universal orbit processing al-
gorithm before specific steering engine is called and ide-
ally the need for human intervention on exception han-
dling is minimized.  The algorithm interprets the underly-
ing orbit from monitor and correction element data while
performing estimates on misalignment and monitor errors
by a well defined procedure.  The resulting underlying
orbit, including position, angle, path length and other or-
bit-dependent information, becomes source of steering
constraints not only at locations of existing monitors, but
at any location deemed necessary to have the orbit con-
strained or corrected, either due to need of blind spot
elimination or due to explicit constraints on angle, path
length etc.  This enhanced set of orbit constraints, or vir-
tual monitors, is fed into any generic steering engine with
no a priori knowledge of either the specifics of the orbit
control goals or the need of exception handling.  In the
following report this program is outlined and its theoreti-
cal basis discussed.  Application at CEBAF is also de-
scribed.

2  ORBIT CORRECTION ISSUES

2.1  The generic linear orbit correction problem
All linear orbit correction problems, regardless of the con-
straints, can be represented conceptually as
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where Xi is orbit error at the i-th BPM, Cj the strength of
the i-th corrector, and Mij the linear response linking Xi

and Cj.  The core of any steering algorithm amounts to

inverting or pseudo-inverting M such that the corrector
changes DCj can be found to cancel the orbit error Xi,
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with different algorithms having different emphases on the
weighting scheme, response matrix near-singularity, cor-
rector strength constraints, etc.

2.2  The more generalized orbit correction problem
For the most general orbit correction problem we gener-
alize Xi to any of the coordinate errors including position,
angle, path length, etc., as well as quantities derivable
from orbit errors such as spurious dispersion caused by
angle error at non-zero chromaticity.  We can also gener-
alize Cj to any orbit correction devices, as well as energy
and devices having different effects on different beam
passes.  The response matrix elements Mij therefore can be
any of the linear transfer matrix elements or linearized
second order transfer elements, possibly relating a single
corrector to multiple pass beam coordinates.  The gener-
alized orbit errors need to be realized by quantities not
directly observable by the BPM's.  They serve as virtual
BPM's when included in Eqn (1) with proper weighting.

2.3  Response matrix singularity
When the response matrix is near singular so that some
linear combination of the correctors has almost undetect-
able response at all the monitors but large response else-
where, naive correction schemes fail by producing exces-
sive corrector strengths and undetected orbit bumps.  Cor-
rector reduction or strength constraint can solve this
problem [1], as is done by many algorithms.  It is not the
optimal solution since usually a combination of correctors,
not a single one, causes the problem.  Indiscriminately
limiting or eliminating correctors kills not only the of-
fending combination, but also the useful ones, especially
those needed for injection fixes.  If however we impose a
constraint on the orbit at a strategically chosen location
which couples only to the offending combination, we
would constrain the offending combination while allowing
the useful ones to function. Such orbit constraints at arbi-
trary locations constitute another instance of the virtual
monitors.  A well defined algorithm to determine where
these virtual monitors should be placed will be described
later [1].

2.4  Transparency of singularity handling and other gen-
eralized constraints to generic steering algorithms
In light of the above discussion, the goal of the proposed
algorithm is thus to construct the input generalized orbit
error Xi, generalized corrector strength Cj, and generalized
response matrix Mij which, through the introduction of
virtual monitors, take into account all the steering con-
straints described in section 2.2 and automatically remove
singularities described in section 2.3.  The input data for
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subsequent steering algorithm contain both virtual and real
orbit and response matrix, indistinguishable under the
format of Eqn (1).  They can be given to different steering
algorithms with any level of singularity handling and a
consistent singularity-free outcome conforming to all ad-
ditional constraints should be expected.

2.5  Errors in input data
A major problem affecting orbit correction is the inherent
errors in the input data.  Without an effective filtering
mechanism, such errors can distort the underlying physi-
cal picture and compromise the correction.  In the current
context such filtering mechanism is also critical for con-
straints on the virtual monitors since the latter can inherit
errors from the physical data.  The success of using virtual
monitors thus depends on the ability to screen out errors in
interpreted orbit data, to be discussed in the next section.

3  INTERPRETING THE UNDERLYING ORBIT
AND ERRORS

We have to answer the following question:  Given a set of
physically monitored orbit errors, how does one derive the
generalized orbit errors for the virtual monitors?  A com-
plete set of orbit information of all beam coordinates at
any location can be known given the following:  corrector
strengths, monitor readings, monitor errors, field and
alignment errors, and injection errors.  The last 3 errors,
being unobservable, have to be estimated from the first 2
and the model.  The distinction between the injection and
all the other misalignment type errors is artificial, de-
pending on choice of starting point.  We therefore focus
on two types of errors: monitor error and alignment type
error.  The effect of all alignment type error on the orbit X1

at the p-th monitors is
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where d a
iX  is the misalignment induced error in the i-th

coordinate at location indexed a.  ap
iM1  is the transfer

matrix element linking such error to the p-th monitor.
The effect a monitor error has on the apparent orbit at

the p-th monitor is simply its offset at that monitor
pp X1d=D . (4)

Although not part of the real orbit, this error will be in-
cluded as input to any orbit correction algorithm.

It can be shown that with all the above errors included,
the best orbit correction that can be achieved by any algo-
rithm represented by Eqn (1) is limited by the residual
error E:
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where MCM is the response matrix linking all correctors to
all monitors, P^ and P\\ are projection operators mapping
any vector into components outside and inside the sub-
space spanned by the column vectors of MCM, and K and D
are the error vectors of Eqns (3) and (4).  Eqn (5) is intui-

tively obvious since no corrector system can eliminate an
orbit error pattern which is outside the corrector’s reach,
while only the part of a “fake” orbit error pattern due to
monitor offsets that is correctable will lead to real but
unobserved residual orbit errors after correction.  An im-
portant task for any intelligent orbit correction algorithm
is to distinguish the signature of these two very different
sources of errors before applying correction.  This can not
be achieved exactly since the problem is usually under-
constrained.  An algorithm developed to obtain consistent
estimates however proved successful in a wide range of
cases.  This is described in the following sections.

3.1  Alignment biased solution
We start with the extreme assumption that any discrep-
ancy between observed orbit, corrector strength, and
model
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is predominantly attributable to monitor errors.  We then
perform singular value decomposition (SVD) on the re-
sponse matrix MAM from a wide range of alignment error
locations and coordinates to all monitors

VWUM T
AM ··= .

The matrix V consists of orthonormal combinations of
alignment errors which have decoupled effects in the
monitor space represented by U.  These effects Ui are then
compared to Yi of Eqn (6) in turn to identify the error
combination responsible for Yi.  This is iterated to build a
matrix N of combined error effects to account for Yi
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It was indicated that the orbit discrepancy Yi is reduced at
each iteration as more alignment errors are included, and
thus will represent progressively more contribution due to
monitor errors.  Yi is also used to update the weighting of
monitors at every iteration to speed up the distinction of
major monitor errors above noise level.  The iteration is
terminated when the algorithm detects an unnatural jump
in the alignment error magnitude Sj in Eqn (7), signaling a
monitor error being misinterpreted as alignment-induced.

3.2  BPM biased solution
We start with the extreme assumption that the orbit dis-
crepancy of Eqn (6) is predominantly attributable to
alignment type errors.  We perform the same iteration
process as described in the last section.  The only differ-
ence is that the monitor weightings are not updated, and
since the monitor errors are assumed to be more reliable,
the iteration terminates when the orbit discrepancy is be-
low a specified limit.

3.3  Interpolation between the biases
An entire spectrum of orbit interpretations can be inter-
polated between these two extremes.  Such interpolation
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also represents a compromise between globally and lo-
cally-oriented interpretations of the data, since the more
alignment error one introduces to account for the discrep-
ancy, the more emphasis is given to satisfying the short
range observation at the expense of global consistency.
This algorithm allows user defined criteria for choosing a
desired interpolation, for example, the one with minimal
combined RMS of alignment and monitor errors.

The introduction of alignment errors amounts to en-
hancing the fitting parameters in a rigid injection fit, with
only responses from injection to monitors.  We can repre-
sent this enhanced response with a matrix U0 which con-
tains at least the injection responses, and maybe any num-
ber of responses to alignment errors.  The final residual
correction error becomes, with input of the interpreted
orbit:
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where the projection operators P
^ and P\\ are as defined in

Eqn (5).  Depending on the predominance of alignment or
monitor error, changing the content of U0, amounting to
interpolation between the two biases, can help offset the
effects of K or D and reduce the overall residual error.

4  IMPLEMENTING VIRTUAL MONITORS

Once the interpretation of the underlying orbit is decided,
we have the complete information of beam coordinate at
any location.  The virtual monitors described below use
this information as input to the steering algorithms.

4.1  Generalized steering constraints realized as virtual
monitors
Very often not only the orbit at the monitors are targeted
for correction, but also injection angle at the end of the
line, orbit at unmonitored locations, or even overall path-
length need to be constrained simultaneously.  Knowing
the interpreted beam coordinate everywhere, one can eas-
ily include these as orbit errors at virtual monitors, and
feed this together with the relevant response matrix ele-
ments and weighting to a generic steering algorithm.  The
latter has no need to know a priori that the input contains
more than pure position data at the real monitors.

Another type of steering constraint happens with orbit
dependent optics.  When the orbit is changed, the higher
order optical elements pick up extra contributions.  We are
especially interested in the effects of chromaticity-like
elements Tij6, the orbit effect of which on the linearized
elements Mi6 between points a and b can be expressed as
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where we sum over all the locations c with appreciable
coordinate change and/or Tij6.  The second term in the sum
of Eqn (9) becomes dominant with large chromaticity-like
optical elements and a steering constraint on the overall
Mi6 can be realized again through virtual monitors which
simply have as response matrix elements the product of
these Tij6‘s and the ordinary Mi6‘s.

4.2  Virtual monitors created for singularity control
To combat the problem of excessive correction due to
response matrix singularities, an algorithm is developed
which automatically places extra constraints in the form of
virtual monitors coupling strongly to the singular corrector
combinations.  It is outlined in the following.
1.  Determine cutoff numbers R and S, R measures the
evenness in corrector effect distribution among monitors
reflected in SVD condition number. S with
0 < S < 1 measures orthogonality of the corrector effects.
2.  Form a set CM of locations densely covering the beam
line of interest, not necessarily tied to any physical ele-
ments.  Form the response matrix MCA from all correctors
to these locations.
3.  Perform SVD on the corrector-to-monitor response

matrix MCM, if the condition number svd
M CMN , i.e., the ratio

between the largest and the smallest singular values, is
greater than R, or the normalized Gram determinant

CMMG  [1] is less than S to the power of the number of
correctors, continue.
4.  Identify the row v of V with the smallest singular value.
5.  Apply the matrix MCA to the vector v.  Identify its larg-
est component with index j.
6.  Place a virtual monitor at the j-th location in the set CA.

7.  Iterate steps 3-6 until svd
M CMN  and CMMG  satisfy the

conditions specified in step 3.
Once all the virtual monitors are identified, the interpreted
orbit at these locations are added to the input orbit for the
steering algorithm.  The steering result should be auto-
matically free of singularity.

5  STATUS OF APPLICATION

The algorithm described in this report has been prototyped
in Mathematica and tested on a wide range of CEBAF
machine data.  From these tests the error analysis algo-
rithm of Section 3 performed satisfactorily.  It was used to
identify BPM offsets and misalignments in various areas.
Singularity-induced excessive correction has been ob-
served in the lower arcs at CEBAF and verified by simu-
lation.  The algorithm of Section 4 for eliminating such
problems using virtual monitors has been tested against
simulation and found to perform extremely well.  Inclu-
sion of generalized steering constraints such as angle and
path length has been tested in simulation.  Inclusion of
higher order optical effects has not been tested.  Applica-
tion to simultaneous multiple pass steering has been tested
separately.

Implementation under the on-line control system [2] is
being carried out.  With the degree of versatility and ro-
bustness to be built into the production version, it is ex-
pected to meet the unique demands for global orbit control
at CEBAF.
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