
APPLICATIONS TOOLKIT FOR ACCELERATOR CONTROL
AND ANALYSIS

M. Borland
Advanced Photon Source, Argonne National Laboratory
9700 South Cass Avenue, Argonne, Illinois 60439 USA

Abstract

The Advanced Photon Source (APS) has taken a
unique approach to creating high-level software applica-
tions for accelerator operation and analysis. The approach
is based on self-describing data, modular program toolkits,
and scripts. Self-describing data provide a communication
standard that aids the creation of modular program toolkits
by allowing compliant programs to be used in essentially
arbitrary combinations. These modular programs can be
used as part of an arbitrary number of high-level applica-
tions. At APS, a group of about 70 data analysis, manipu-
lation, and display tools is used in concert with about 20
control-system-specific tools to implement applications for
commissioning and operations. High-level applications are
created using scripts, which are relatively simple inter-
preted programs. The Tcl/Tk script language is used,
allowing creating of graphical user interfaces (GUIs) and a
library of algorithms that are separate from the interface.
This last factor allows greater automation of control by
making it easy to take the human out of the loop. Applica-
tions of this methodology to operational tasks such as orbit
correction, configuration management, and data review
will be discussed.

1 INTRODUCTION

Every accelerator facility faces the challenge of creat-
ing high-level applications for controlling and diagnosing
the operation of the accelerators. Traditionally, this has
taken the form of compiled programs specifically coded
for each application and accelerator. A more efficient
approach is to solve one’s problems using generic and con-
figurable programs. This reduces programming effort and
speeds the production of usable applications. It takes
advantage of the fact that many accelerator control prob-
lems involve similar operations, e.g., orbit correction is
really no different from other slow feedback problems.
Similarly, many graphical display tasks (e.g., plotting an
orbit or plotting vacuum pressure around a ring) involve
identical operations.

While one need not use stand-alone generic programs
and a scripting environment in order to have generic,
multi-use code, it is very convenient to do so. Having algo-
rithms available in the form of ready-made programs
rather than as a library of subroutines is far more conve-
nient and allows more rapid development. Individual com-
piled programs can conveniently be used in stand-alone
fashion or coordinated by a script. This coordination cre-
ates a high-level application, typically with a GUI, out of
reusable low-level components. In the rush to create GUI
applications, we must not forget that sophisticated users
frequently require more power and flexibility than is easily
provided using GUIs. The use of scriptable, command-
line-oriented tools satisfies this need in addition to aiding

development of GUI scripts. Indeed, at APS many GUIs
have their genesis in work done by experts using com-
mand-line-oriented tools.

2 SDDS TOOLKIT

The advantage of configurable programs is amplified
when many such programs use a common data file proto-
col. These programs can then properly be called a program
“toolkit.” At APS, the Self-Describing Data Sets (SDDS)
file protocol [1,2,3,4] is used not only for many program
configuration tasks, but also for storage of experimental,
archival, and simulation data. Briefly, self-describing data
gives access to data by name and class only, without refer-
ence to position or concern about the presence of data
items that are not of interest.

The SDDS Toolkit, comprising about 70 generic pro-
grams, provides the muscle for many script applications.
The disadvantage of scripts is that they are slower than
compiled programs. We mitigate this problem by using the
SDDS Toolkit for computationally intensive operations.
Operations available include graphics, fitting, winnowing,
Fourier analysis, filtering, smoothing, interpolation, cross-
referencing, sorting, histogramming, statistics, equation
evaluation, and others.

3 INTERFACES VS. ALGORITHMS

A goal of our high-level applications effort is a high
level of automation. This is often at odds with the desire to
create GUI applications, since these tend to be written
assuming the presence of a button-pressing user. We have
found that separating the algorithm from the interface is
most difficult when it comes to error and status reporting.
Interactive applications need to report errors and status dif-
ferently than noninteractive applications.

A workable way to handle status messages is the use
of callback routines passed to an algorithm by a calling
routine. In an interactive context, a procedure can be
passed the name of a status updating procedure that it can
use to provide operator status reports. In a noninteractive
context, the same procedure can be passed, for example,
the name of an empty callback routine that does nothing
other than return.

The Tcl/Tk error catching mechanism is convenient
for handling errors in a multi-level procedure context.
When an error is encountered in a Tcl/Tk procedure, a
return can be made with an error code that is ‘caught’ by
the calling procedure. This procedure can either display an
error message or return a catchable error itself. Most of our
procedures do the latter only. Only the highest-level, GUI-
related procedures display error messages when they catch
an error.

In a separate paper in this conference [5], we discuss
the Procedure Execution Manager (PEM), a Tcl/Tk envi-

24870-7803-4376-X/98/$10.00  1998 IEEE

ronment for procedure execution. PEM was developed to
allow procedures to easily operate with varying levels of
operator involvement. For example, operator interaction
with a PEM procedure is (normally) automatically con-
fined to the highest-level procedure. In different contexts,
the same code will automatically accept operator input or
input from a calling procedure. Error and status messages
are posted to a single area regardless of the level from
which they originate.

4 OTHER TOOLS

APS uses the EPICS [6] controls system. In addition
to the SDDS Toolkit, there are EPICS-specific programs
that are used in creating high-level applications. Among
these are 20-odd EPICS-specific SDDS-compliant pro-
grams [2], which include data-collection tools, experiment
execution tools, save/restore tools, a general-purpose feed-
back program (discussed below), and others. These tools
are all used by multiple GUI applications.

For displaying live data that is a function of position
around a storage ring or in a transport line, the program
ADT (Array Display Tool [7]) is used. ADT is configured
by an SDDS file that tells it what process variables to dis-
play and an optional additional file that supplies informa-
tion on how to draw the accelerator lattice. ADT allows
saving and recalling of data to memory or files, tracking of
minimum and maximum values, computation of statistics,
differencing of current and saved data, and other features.
It is most commonly used to view the orbit in the APS
ring. In several cases, scripts use SDDS tools to create
ADT configuration files on the fly to display context-
dependent data.

5 EXAMPLES

In this section, we present applications of the above
methods, all drawn from routine APS operations. All of
these applications rely solely on the SDDS-compliant pro-
grams and Tcl/Tk scripts, unless otherwise noted. These
examples illustrate how much may be accomplished with a
set of tools like those in use at APS.

5.1 General-Purpose Workstation-Based Feedback

As mentioned, one of the EPICS-specific SDDS tools
is a general-purpose feedback program that is configured
by SDDS files. This compiled C program is used for con-
trolling rf gap voltages under beamloading conditions, for
providing specialized power supply regulation, for correct-
ing the global orbit, for local beamline steering, and for
correcting transport line beam trajectories. The program
itself has no GUI, but is run in its various instances by dif-
ferent GUIs. Some of these are simply configurable
instances of the same GUI, while others are custom-made
for specific applications. One GUI allows on-the-fly cre-
ation of a simple one-readback, one-actuator feedback
loop.

The orbit correction system for the APS storage ring
[8] is broken into several parts. One script is used to edit
configuration files specifying which correctors and beam
position monitors to use. This script also performs singular
value decomposition (using a compiled program) to create

the inverse matrix file, starting with a forward matrix from
either simulation or experiment. The job of using the
inverse matrix to perform orbit correction is performed by
another, independent script. The advantage of this arrange-
ment is that either of these functions may be performed by
any means desired, i.e., one could have several scripts that
perform the actual correction or several that prepare input
data. This is convenient during development of new algo-
rithms, as it allows one to work on only that part of the sys-
tem that is of interest. In addition, it allows use of
interfaces for multiple applications; for example, the same
script that prepares input for the workstation-based global
correction scripts also prepares input for the real-time
feedback system [9].

5.2 Configuration Management

Accelerator configuration or settings management is a
problem that all accelerator facilities face. At APS, the
“save/compare/restore” or SCR system is built using
SDDS files, SDDS tools, and Tcl/Tk. For each of 15 major
subsystems, a “request file” is available that lists and
describes the process variables (PVs) that are important for
that system. In addition to being used to acquire PV values
from the controls system, the request file gives tolerance
data, protection status, categorization, and other informa-
tion that determines how each PV is treated in compare,
restore, and review operations. Adding new PVs or a new
major subsystem is largely a matter of adding entries to a
request file or creating a new request file.

Partial review, restore, and comparison operations are
supported via several mechanisms. Operators may choose
categories and subcategories from those defined in the
request file. Since these may change with time, the actual
categorizations are extracted from the saveset and used to
configure the GUI. Operators may also choose to select
PVs based on “filter files,” which are lists of PVs with a
specific functional relationship (e.g., all PVs relevant to
steering a certain beamline). For some subsystems, graphi-
cal display of comparison operations is available; addition
of more such displays is planned.

In addition to the main SCR script, several other
applications make savesets using the same procedure that
the main SCR script uses. This procedure permits any
application to make “backup” data giving the state of the
accelerator prior to making a change. If the operator needs
to recover from the change, he then uses the main SCR
script rather than another, redundant interface. If the GUI
SCR script were not designed with separation of interface
and algorithm in mind, this feature would not be as simple
to implement in as many contexts.

5.3 Data Review

Another function required at accelerator facilities is
review of archival data. All archival data collection for
accelerator operation is performed using SDDS-compliant
EPICS programs. This includes simple time-series data
collection, alarm logging, and glitch- or beam-dump-trig-
gered data collection. The data collection processes are
managed using UNIX cron jobs. This includes daily start-
ing of jobs, automatic restarting of jobs following a crash,

2488

and daily postprocessing of data. Postprocessing includes
recovery of any corrupted files that might result from a
system crash, compression of the data, and in some cases
analysis of the data.

Normally, users access this data through Tcl/Tk GUIs.
In most cases, a common GUI is used for accessing all the
time-series data, another for all the alarm log data, and so
on. In several cases, customized Tcl/Tk GUIs have been
provided for certain systems that have unusual or specific
display requirements (often involving preprocessing of
data prior to display). Users requiring even more access
can make use of the same Tcl procedures used by the GUIs
to find the data of interest (typically by specifying the
group the data belongs to and the time interval of interest).
There is also a mechanism for exporting data to user files
in various formats, such as SDDS or spreadsheet format.

Another application of this data is the automatic cre-
ation of GIF images for display on the World Wide Web.
About 150 different plots are created at intervals of one to
15 minutes, displaying data from the APS storage ring vac-
uum, absorber, and rf systems. These plots are created
using the same SDDS graphics program that is used to cre-
ate plots from Tcl/Tk scripts. The Experimental Facilities
Division at APS has created a Web interface that permits
on-demand plotting of SDDS data from their systems
using SDDS tools and Perl scripts [10].

Several types of glitch-based data collection jobs are
used, again based on SDDS-compliant EPICS tools. These
collect data at a relatively high rate in a circular buffer,
until one or more glitch or trigger events are seen. Follow-
ing the event, data collection continues for a specified
period, after which the data is added to the log file. A sin-
gle interface is used for all of the glitch data, with custom-
ized plotting and analysis available for some data sets. For
example, orbit glitches are logged for the APS storage ring
(a glitch is defined as a change in a beam position reading
over a defined threshold at one or more locations). The
user may select events based on cause (e.g., x orbit motion,
beam loss), then plot the raw data, plot difference orbits, or
perform analysis to find the most likely corrector to have
caused the motion.

A third type of data collected in large quantities at
APS is alarm information. The most typical use of this
data is to determine when a certain piece of equipment
tripped. The GUI provided as an interface to this data pro-
vides simple printouts of events and the times they occur;
it also creates histograms of alarm density and total alarm
counts per channel within a defined period. A related tool
provides probability analysis of alarm data, indicating, for
example, whether an observed alarm rate during one
period is improbable compared to the alarm rate in another
period.

5.4 Digital Scope Control and Data Acquisition

APS has a number of remotely-controlled digital
oscilloscopes used for monitoring pulsed magnet wave-
forms, rf signals, current monitor signals, and the like. At
present, two of these instruments are controlled using Tcl/
Tk scripts and SDDS tools. The scripts perform configura-
tion save and restore operations for the scope and essen-

tially arbitrary associated equipment (e.g., multiplexers).
Recently, we have implemented waveform documentation
software that sets up equipment (e.g., a pulsed power sup-
ply) in a standard way, then acquires and archives wave-
form data. This permits tracking of changes in the
response of such equipment.

5.5 Accelerator Measurements

A number of accelerator measurements have been
implemented as GUI scripts that were originally developed
by physicists using SDDS tools. To a large extent, we sim-
ply wrapped a GUI around the algorithm created by the
physicist. Among the applications developed for the APS
storage ring are measurement of small orbit and tune
changes due to undulator gap changes, measurement of
BPM offsets using orbit bumps and variation of quadru-
pole strength, measurement of the beam motion spectrum,
and automated timing of BPMs.

6 CONCLUSIONS

The combination of the SDDS toolkit, SDDS-compli-
ant EPICS tools, and Tcl/Tk has proven very effective in
the development of high-level applications for APS opera-
tions. True reusability of programs is made possible
through the use of self-describing data and proper general-
ization of program functions, saving programmer effort
and speeding the development of new applications. Sepa-
ration of the user interface and the algorithm has made it
possible to reuse code and automate operations. The com-
mand-line orientation of the SDDS tools enhances use by
experts, provides easy integration into scripts, and permits
rapid use of expert-developed algorithms in GUIs.

7 ACKNOWLEDGMENTS

Contributions to the above work have been made by a
number of individuals at APS, including J. Carwardine,
L. Emery, K. Evans, C. Saunders, and N. Sereno. Work is
supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, under Contract No. W-31-109-
ENG-38.

8 REFERENCES
[1] M. Borland, “A Self-Describing File Protocol for Simulation Inte-

gration and Shared Postprocessors,” Proc. of the 1995 Particle
Accelerator Conference, Dallas, Texas, pp 2184-2186 (1996).

[2] L. Emery, “Commissioning Software Tools and the Advanced
Photon Source,” ibid, pp 2238-2240.

[3] M. Borland et al., “Doing Accelerator Physics Using SDDS,
UNIX, and EPICS,”Proc. of ICALEPCS ‘95, pp 382-391 (1997).

[4] M. Borland et al., “The Self-Describing Data Sets File Protocol
and Toolkit,” ibid, pp 653-662.

[5] M. Borland, “The Procedure Execution Manager and Its Applica-
tion to Advanced Photon Source Accelerator Operation,” these
proceedings.

[6] L. R. Dalesio, et. al., “EPICS Architecture,”Proc. of ICALEPCS
‘91, KEK Proceedings 92-15, pp 278-282 (1992).

[7] K. Evans, private communication.
[8] L. Emery et. al., “Advances in Orbit Drift Correction in the

Advanced Photon Source Storage Ring,” these proceedings.
[9] J. Carwardine et. al., “Commissioning and Performance of the

APS Real-Time Orbit Feedback System,” these proceedings.
[10] M. Ramanathan, private communication.

2489

