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Abstract

Coherent nonlinear longitudinal dynamics have been inves-
tigated in unbunched hadron beams[1]. These phenomena
may be described using a theoretical framework originally
developed to describe interactions in plasmas[2]. Processes
exhibiting the weakest degree of nonlinearity are known as
wave-wave interactions. Manifestations of these interac-
tions may be used to help characterize a beam. Echoes have
been used to measure the collisional damping rate of weak
diffusive processes which degrade a stored beam. Further
information is contained in the echo shape, which depends
on the form of the particle energy distribution. The echo
shape may also be modified by the presence of wakefields,
or nonlinearities in the machine lattice which affect the lon-
gitudinal motion of the particles.

1 ECHO MEASUREMENT AND DYNAMICS

Beam echoes may be generated transversely [3, 4], or
else longitudinally in either a bunched beam [5] or an un-
bunched beam [1, 6, 7]. Although the underlying phenom-
ena are the same in all cases, the discussion here pertains
specifically to longitudinal echoes in an unbunched beam.

An echo is a coherent current oscillation which grows
out of a quiet beam, with some delay after a sequence of
two independent pulse excitations. In the absence of wake-
fields, the beam response to a longitudinal kick naturally
decoheres, with a decoherence time that is inversely pro-
portional to the energy spread of the beam. Even though
the coherent motion of the beam damps away, the phases
of the particles will remain correlated. Due to this correla-
tion, the phase evolution of the decoherence is reversible.
An echo is a partial reconstruction of the particle phase re-
lation present during the coherent motion from the initial
kicks. This reconstruction normally occurs some time after
the beam response to the kicks has damped away.

Longitudinal echoes in an unbunched beam have been
clearly observed in the Fermilab Accumulator. Figure 1
shows the time development of the peak beam current dur-
ing echo production, as seen on a broadband longitudi-
nal resistive-wall beam detector. The two large amplitude
spikes within the first 100 ms correspond to the longitudi-
nal kicks that were applied to the beam at harmonicsh = 9
andh = 10, respectively. The frequency of the coherent
response of the echo occurs at the difference frequency of
the kicks,fecho = fkick2 − fkick1, which in this case is
h = 1.
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Figure 1: Beam response to a pair of impulse excitations
separated in time by∆t = .075 seconds. The echo is cen-
tered at 0.75 seconds after the first kick. The beam pa-
rameters were: beam currentI0 = 147 mA, η = .023,
total beam energyE0 = 8696 MeV, beam energy spread
σε = 3.2 MeV, transverse normalized emittancesεH =
1.75π mm-mrad,εV = .56π mm-mrad, and peak separa-
tion of the echo∆tpeak = .07 sec. Note the presence of a
higher-order echo immediately following the second exci-
tation pulse.

The timing of an echo is theoretically predicted to be
techo = [fkick2/(fkick2−fkick1)]∆t, where∆t is the time
separation between the two kicks. Verification of the scal-
ing of techo with the kick frequencies is shown in figure 2.

2 DIFFUSION RATE MEASUREMENTS

Echoes are a useful tool for measuring the diffusion rate in
a beam. Current methods of measuring thermal effects in a
beam take on the order of hours. Echoes effectively amplify
the effects of scattering, allowing the measurement of small
collision frequencies in a much shorter time.

The presence of a diffusion mechanism destroys the re-
versibility of the decoherence of particle bunching. In the
absence of diffusion, the phase evolution of the spreading
particles depends strictly on their relative energies. The
phase development of the particles due to their energy
change from the second kick combines with their phase de-
velopment from the first kick in such a way as to rebunch
the particles. Partial decorrelation will reduce the echo am-
plitude, and full decorrelation will completely inhibit the
echo. A collisional process, for example intrabeam scat-
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Figure 2: Measured echo delay time as a function of sep-
aration of the drive pulses. Upper curve:1st pulse at
h = 9, 2nd pulse ath = 10, giving expected time de-
pendencetecho = [10/(10 − 9)]∆t = 10∆t. Lower
curve: 1st pulse ath = 4, 2nd pulse ath = 5, giving
techo = [5/(5− 4)]∆t = 5∆t.

tering, will break down the correlation between energy and
phase by knocking individual particles off their original tra-
jectories. A diffusion process is thus expected to change
the dependence of echo amplitude on the time at which the
echo occurs, decreasing the amplitude until there is no echo
at all.

In the presence of diffusion, the beam current at the echo
harmonic goes as

Iecho = AJ1(k1δ∆t) exp (−k2νt3echo) (1)

whereA is a constant,δ is proportional to the kick strength
of the excitation,k1 is a constant equal to one of the kick
harmonics,∆t is the time between kicks,k2 is a constant
which depends on the kick harmonics and the echo har-
monic, ν is the collision rate, andtecho is the time from
the first kick to the center of the echo. Decorrelation due to
collisions results in a decay ast3, which modifies the other-
wise Bessel function form of the echo amplitude response.
Thus, by fitting a measurement of echo amplitude versus
the time of the echo, the diffusion rate in the beam may be
determined. Such a fit is shown in figure 3.

The diffusion rate is large enough in the Fermilab Accu-
mulator that only a portion of the first lobe of the Bessel
function is visible in the beam response. This was further
verified by performing an echo amplitude scan at two dif-
ferent sets of kick harmonics, as shown in figure 4. A com-
parison of the time when the echo amplitude vanishes in
the two scans indicates whether or not this zero is a node in
the Bessel function dependence, becausek1 6= k2 in equa-
tion 1. The ratio of the vanishing time in the two scans of
figure 4 is consistent with the ratio of the decay time con-
stant in equation 1, and is not consistent with the ratio of
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Figure 3: Peak echo response as a function of the time to
echo following the initial pulse. The solid line represents a
theoretical fit corresponding to a collision rateν = (3.0 ±
0.8)× 10−4 Hz.
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Figure 4: Echo amplitude vs. echo timetecho. The top scan
was done with kick harmonicshkick1 = 9 andhkick2 =
10, giving hecho = 1. The bottom scan was done with
hkick1 = 8 andhkick2 = 10, giving hecho = 2. All other
parameters were the same.
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the argument of the Bessel function.

3 ECHO SHAPE

There is other information about the beam besides the dif-
fusion rate residing in an echo. Knowledge of the beam en-
ergy sigma and the shape of the energy distribution of the
particles may be extracted. It is perhaps even possible to
learn about nonlinearities in the machineη function which
governs the transit times of particles around the machine.

One of the major features of the observed echoes has
been a deep notch in the center of the response. In the
absence of wakefields, the echo current is dependent on the
derivative of the unperturbed particle energy distribution.
For a Gaussian beam, the slope of the distribution is zero at
the center, hence the echo current goes to zero in the middle
of the echo. The separation of the peaks on either side of
this zero has a predicted dependence on the energy width
of the beam. This goes as,

∆tpeak =
β2

hechoπfrev|η|σE

E0

(2)

whereβ is the relativisticβ of the beam,hecho is the har-
monic of the echo frequency,frev is the revolution fre-
quency of the machine,η is the slip factor governing the
particle transit time, andσE

E0
is the energy sigma over the

central energy of the Gaussian beam. In figure 5, experi-
mental results are shown to agree with equation 1 to within
20%.
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Figure 5: Peak separation of double-peaked echoes,
∆tpeak, versus the inverse ofσε

E0
, the energy spread of the

beam. The value of the slope from the linear fit is 1.76E-
5. The beam parameters wereI0 = 147 mA, η = .023,
β2 = .988, hecho = 1, andfrev = 629 kHz.

Departures of the particle energy distribution from a
Gaussian will be reflected in the shape of the echo. For
example, during one study period an instability developed

which knocked particles out of the center of the distribu-
tion. This left a beam energy profile with a depression in
the center and shoulders on either side. The correspond-
ing shape of the beam echoes is shown in figure 6. The
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Figure 6: Beam echo from a non-Gaussian beam.

shape of the resulting beam profile can be constructed with
a superposition of two offset Gaussians. By superposing
the two corresponding normally notched echoes, a three-
peaked echo such as that shown in figure 6 results. Since
the echo shape is dependent on the slope of the beam dis-
tribution, perhaps a more careful and systematic algorithm
for extraction of the beam profile can be developed.

While doing echo amplitude scans at various beam en-
ergy spreads, it was found that for large enoughσε the
notch in the echo disappeared. Leaving all other param-
eters the same, scans were done forσε in the range of 2.3
to 8 MeVc. As the beam energy spread increased, the echo
amplitude decreased, and the central notch in the echo filled
in, eventually vanishing completely. Figure 7 shows echoes
from three of these scans. The echoes occur at approxi-
mately the same time relative to the driving pulses, but their
shape is quite distinctive. Although only three echoes are
shown in the figure, the trend is assiduously followed in all
seven scans which were done. One possible explanation is
that nonlinearities in theη function are mixing the particle
distribution in such a way as to destroy the notch. The re-
lation between the spread in particle revolution frequencies
and the spread in particle energies is given by,

∆f

f0
= − η

β2

∆E

E0

= − 1
β2

∆E

E0

[
η0 + η1

1
β2

∆E

E0
+ · · ·

]

As the energy spread of the beam gets larger, the nonlinear
terms will make a greater contribution to the motion, and
destroy the linear correlation between the energy and phase
of the particles.
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Figure 7: Three longitudinal beam echoes occurring in
beams with different energy widths. The beam energy
sigmas (σε) were from top to bottom, 4.0, 6.1, and 8.0
MeVc. The energy spread was controlled with longitudi-
nal stochastic cooling systems, all other beam conditions
were the same. The beam intensity was 147 mA. Echoes
which occurred at nearly the same time relative to the driv-
ing pulses were chosen for comparison.

4 CONCLUSIONS

High energy hadron beams are rich in nonlinear effects
which are as of yet in the early stages of exploration.
Echoes, which are a manifestation of weakly nonlinear
wave-wave interactions, have been studied using an un-
bunched beam in a storage ring. Echoes can be used to
explore the nature of the beam. The peak separation of the
echoes generated in a Gaussian beam is proportional to the
beam energy spread. In general, in the absence of wake-
fields, the shape of the echo depends on the slope of the
energy distribution of the particles.

Echoes are sensitive to anything in a machine which dis-
rupts the linear relation between particle energy and parti-
cle phase. As a result, it has been possible to make a fast
measurement of the diffusion rate in a beam using longi-
tudinal echoes. In the Fermilab Accumulator storage ring
it has been observed that the notch normally present in the
center of the echo fills in at large beam energy spreads. It
may be that nonlinearities in theη function are responsible
for this.

The investigation of beam echoes has demonstrated that
studying nonlinear effects can be a useful tool in beam
physics, allowing a deeper understanding of the behavior
of particle storage rings.

5 ACKNOWLEDGEMENTS

This work was greatly facilitated through the support of Dr.
David Finley and the Pbar group at Fermilab.

6 REFERENCES

[1] L.K. Spentzouris,Ph.D. Thesis, Northwestern University
(1996).

[2] R.C. Davidson,Methods in nonlinear plasma theory, Aca-
demic Press, 1972.

[3] G.V. Stupakov, Superconducting supercollider laboratory re-
port No. SSCL-579, 1992.

[4] G.V. Stupakov and K. Kauffmann, Superconducting super-
collider laboratory report No. SSCL-587, 1992.

[5] P.L. Colestock and S. Assadi, Measurement and analysis of
longitudinal bunched beam echoes in the Fermilab Tevatron,
this proceedings

[6] O. Bruening, On the possibility of measuring longitudinal
echoes in the SPS, CERN report SL/95-83, Sept 1995

[7] L.K. Spentzouris, J.F. Ostiguy, and P.L. Colestock, Direct
measurement of diffusion rates in high energy synchrotons
using longitudinal beam echoes,Physical Review Letters,
766, 620 (1996)

19


