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Abstract equationRk? = 2 (¢ — t..;)* which determines the angle

A transverse force acting on particles of a short bunch cgLcan be written as

herently radiated in free space is derived. 2 2\ 2 y? r
1+ (1 + —> —l—?—Z (1 + ;) cos (Y + ). (2)

g

? terms ofa, ¢ andz, the denominator in Eq. (1) is

1 INTRODUCTION

. . - |
In this paper, we derive the transverse radiation force o
a bunch of ultrarelativistic charged particles coherently ra- B _a .
diating in free space assuming that the bending radius is PrecR = pﬁ Alota)sin(yta), @)
much larger than the beam dimensions. In contrast to a sim- ,
ilar recent study [1], where the authors decompose the tofa'd the polar components of the vector potential are
transverse force and find only a part that is responsible for .
the distortion of the beam orbit, we derive a full expression A, = w, Ag = W. (4)
for the force and leave the issues of the beam dynamics for = Bret = Bret
a separate consideration. Another approach to the calculgye expand the potentials in the Taylor series assuming
tion of the transverse force has been previously developed
in [2].

In many cases considered in this paper, the calculations
are extremely cumbersome; they were systematically per-
formed with the use of symbolic engine of the computer
program MATHEMATICA [3].

2 POTENTIALS AND FIELDS

Our approach is based on Taylor expansion of the electro-
static potentialp and the vector potentia\ in the vicinity

of the particle. For a moving point charge, the potentials
are given by the Lienard-Wiechert formula [4]

0

€ €8t Figure 1: Particle trajectory and coordinate system.
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thaty <« 1 andz, y < p. In order to perform Taylor
wherer andt refer to the observation point and time, re-expansions, we need to solve Eq. (2) foand substitute
spectivelyg is the particle charge,.. is the ratiov/c eval- ~ the solution into Egs. (3), (1) and (4). For given potentials,
uated at the retarded time,, andR =r — r,.;, where the electric field can be found by differentiatipgand A
rot gives the location of the particle at the retarded time.
The retarded time is determined by the equati®n= E=-Vo— 104 _ —Ve+5=—= H=Rx E (5)
¢ (t — t,er). The particle is considered to be extremely rel- c ot N R

" T . o
ativistic, so that the parametee= v~ = 1 — §° < 1. After finding E and H, we calculate the Lorentz force

We assume that the particle moves along a circular orbft acting on a test particle located at pointsuch that
of radiusp, as shown in Fig. 1. The vectoy refers to the It —r,| < p, and moving with the velocity = ¢
p J =

gosmon ththe particle at t('jme We dlnrt]rodumla ths angle along the circle in the same direction as the driving parti-
etween the vectons.; andry, and the angle) between cle,3 = (0, 3,0). Integration of this force with a Gaussian

the vectorr, and the projection of the vectaronto the distribution function gives an expression for the radiation

plane of motion. The causality principle requires that ¢, ;o acting on a Gaussian bunch due to the emission of
0, i.e. the radiation observed &is emitted by the particle . .- qiation in free space

prior to the observation time.

In a polar coordinate syste, 6, y) with the origin 3 DERIVATION OF TRANSVERSE EORCE FOR A
located at the center of the orbit, the radius-veetof the POINT CHARGE
observation pointis representediby- (p + z, 0, + ¥, y),
wheref, = ¢ft/p is the angle corresponding to the posi-For the sake of simplicity, we assume that the test particle
tion of the particle at time. In this coordinate system, the trajectory lies in the plang = 0. In addition, we also
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neglect the difference between the particle velocity and the
speed of light and sét= 0. >
In order to keep track of relative orders of different vari-
ables, it is convenient to assign to each variable a formal
small parametet which will be set to unity in the final
result. We choose ordering such that~ ¢, ¢ ~ &3,
x/p ~ €2, wheree is a small formal parameter. Expanding
Eqg. (2) and keeping terms up to fourth orderofields a
guartic equation foy,

4 2
2 o ra?l oy (Z) =0 (6)
12 p p

The real positive solution to this equation as a function of
¥ andz can be written in terms of a parametric dependencejgure 2: Formation of a singular line (dashed curve) due
" . to radiation of ultrarelativistic particle moving around a cir-
a=/qf (—) . v =q"%g (—) , (7) cle. The circles show wavefronts emitted by the particle at
rd Pq different times.

wheregq is a positive parameter varying from 0 ¢o, and

the functionsf (€) andy (¢) are the singular line found above and shown in Fig. 2 by the
1/2 dashed curve. The superposition of multiple wavefronts on
f(¢ = £1+ (—1 +6E+24/1 -6+ 1252) ; the caustic in the limit = c gives rise to the infinitely large
1 fields on the singular line.
g€ = 3 V1-66+ 12¢2, (8) Expanding Eqgs. (3) and (1) we find for the potential
The upper and lower signs in Eq. (8) correspond to the e (a3 z\
positive and negative values gf respectively. From Eq. v = 0 (g —Y = 0‘;) ; (10)

(7) it follows that the producty |p/z|"/? depends on the
variabley [p/z|*/* only. In the limity) > (z/p)3/2, ap-
proximatelya ~ 2(3v)'/3. For large negative values gf

and for the components of the vector potential

3 —1
W] > (¢/p)*?, we finda ~ —a2/2¢p%. However, as A = Sa (O‘_ o oﬁ) 7
a detailed analysis shows, the applicability of Egs. (7) for p \6 P
negativey is limited by the conditiorjz| > |v|. Larger e a?\ (o 2\ !
absolute values of (negative?)are considered below. Ay = P (1 - 7) (f — = 0‘;) - (1D

An important feature of our solution which follows from
Egs. (7) and (8) is that for each positive valueaothe The longitudinal electric field can be calculated using the
derivative of the functio@a/d+ becomes infinite at some formula
pointy = 1. A simple calculation yields foy,

104, 1 9p x0p 10(p—Ap)
6= —"F . — e B
1 3/2 p oy (ptx)oy p*0Y p O
w=-3(22) . atu=vE @ (12
P and for the transverse electric field we have
Whenz varies from 0 tooo, the first of the equations (9) 8o 10A
determines a curve in the:, 1) plane which we will call Er=—5-+ 5 81;' (13)

asingular line because both potentials and the fields will

have a singularity here. It is important to emphasize thator the radial component of the transverse force we have
the singularity occurs only because we assdme 0; for

finite, though smalb, the fields would be limited every- F.=FE.+ (B xH),
where as soon as # 0. Note also that the parametgon a+ 1 (ot
the singular line equalz. =E, (1 — Bcos (T)) + 5 Eosin (T)
The origin of the singular line can be understood from 9
the following geometrical consideration. If we draw wave- 1 2 1 2
. - i SN ~-|lat+— | E.+=-|a+— | Ep. (14)
fronts of the radiation emitted at different times by a par- 8 2 po

ticle moving with the speed of light around a circle, theyAf loebrd b .
will form a pattern shown schematically in Fig. 2. The ter some algebrd can be writien as
wavefronts are condensed on the outer side of the circle

. . . e . _ € 3/2 3/2
forming a caustic which, as one can show, coincides with b= E /x| "G (1/) lz/pl ) ’ (15)
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The integration in Eq. (20) is not a simple task for two
reasons. FirstF,. has a peak in the region of smal,
[ ~ (|z|/p)*/?, and one needs to accurately evaluate the
contribution from this peak. Second, for positivethe in-
tegrand exhibits a singularity (see Eq. (16)) which should
<N be handled with caution. Tracing the origin of this singular-
2 ae aes o es 1 e 4 2o 2 4 s ity shows that it arises from the differentiation of the poten-
_ o R _ tials which have an integrable singularity|y) — vo| /%
Figure 3: Functiorty (¢) for positive @) and negativet)  This prompts the technique that allows to evaluate the inte-
values ofg.zFor positivez, this function has a singularity gral: representing;. in terms of potentials and performing
atg = —2%/2/3 = —0.94. integration by parts ovet. The resulting integral converges
aty = 19 and can be found with the help of numerical in-
where the functiorts is different for positive and negative tegration. This program is accomplished in Ref. [5]. To
x. Plots of the functiorG (¢) are shown in Fig. 3. Itis simplify the analysis we assume that the bunch leagtis
easy to check that the denominator in Egs. (10) and (18)ch that
vanishes on the singular line and causes the potentials to di- Os > 0y (21)
verge. Expansions af and A for small values ofi) — 19|  The result of the integration in Eq. (20) is
give the following singularity forF. in the vicinity of the

|
G(©)

singular line: (@ s) = —NE |2 / dzg (2 —z,5)In (1.1@)
e 91/6,.1/2 P P
r = ?34/3 4/3" (16) [ [} -
(¥ = %o) 1 g (' —x,s" —s) s
To find the fields behind the particle’(< 0) we use the tg [ do[ds s In p (22)
following ordering:ac ~ ¢ ~ x ~ . Expansion of Eq. (2) -0 0
up to the second order yiel@s.) +¢* + 2> = O with the  Note that for a two-dimensional Gaussian distribution,
solutiona = — {1/)2 + (:c/p)ﬂ /(2¢). This solution leads 1 22 52
to the following expressions for the potentials: 9(@,s) = Yropo, (‘ﬁ - 273) ’ (23)
B e 4 __ e Y x? the second termin Eq. (22) reduces to a product of two one-
voT T T T 2 22 )’ dimensional integrals, and the force will be represented as
Py P vp : _
e W2 a? 24 a product of two functions one of which dependsscnd
Ay = 0 ( stz W) , (17)  the other depends anonly.
p P p For illustration, we assume that,/o; =0.1 and
and for the longitudinal and radial electric fields gs/p =104, and calculate the force on the beam trajec-
e T 1 e 72 tory ' = 0. It turns out that, in this case, the first term in
E = — _ — = —— _—— . i i
0 2 (PZW + 8) ) 2570 ( wsz) Eqg. (22) do'mln-ates anfl. (0, s) can be well approximated
(18) by a Gaussian:
For the transverse force we find N 2
5/ o 5 fr(x,8) =84 eexp<—82>. (24)
e 22 (a? +3p%?) (19) PO 202
T2 2 2002)2
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Note also that immediately behind the particle on the or-

bit (z = 0) the longitudinal electric field is equal t/8,?. 5 REFERENCES
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