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Abstract

Transverse bunch centroid oscillations, induced at operat-
ing beam currents at which transverse wakefields are sub-
stantial, and observed at Beam Position Monitors, are sen-
sitive to the actual magnetic focusing, energy gain, and rf
phase profiles in a linac, and are insensitive to misalign-
ments and jitter sources. In the ‘pulse-stealing’ set-up im-
plemented at the SLC, they thus allow the frequent mon-
itoring of the stability of the in-place emittance growth
inhibiting or mitigating measures—primarily the energy
scaled magnetic lattice and the rf phases necessary for BNS
damping—independent of the actual emittance growth as
driven by misalignments and jitter. We have developed a
physically based analysis technique to meaningfully reduce
this data. Oscillation beta-beating is a primary indicator of
beam energy errors; shifts in the ‘invariant’ amplitude re-
flect differential internal motion along the longitudinally
extended bunch and thus are a sensitive indicator of the
real rf phases in the machine; shifts in betatron phase ad-
vance contain corroborative information sensitive to both
effects. Examples from initial SLC applications illustrate
the method.

Differential internal motion due to intra-bunch energy or
amplitude spread, or bunch spatial extension which makes
collective or multiparticle interactions possible, causes
striking differences between the behavior of the centroid
of a bunched beam, which is measured by a beam position
monitor, and a single particle. Bunch inhomogeneities that
respond differentially to the beamline environment engen-
der decoherence, and possibly recoherence and echo phe-
nomena; current dependent collective effects can strongly
excite novel patterns of centroid motion.

We first discuss general aspects of the difference be-
tween centroid and single particle mechanics in the con-
text of developing a general parameterization scheme for
the former, and then move to some more specific features
of beam dynamics with transverse wakefields.

1 CENTROID KINEMATICS

To develop a useful description of centroid motion that pro-
vides more or less machine-error-specific indicators, we
mimic to a large degree the familiar parameterization of
single particle motion. The parameters acquire new mean-
ings in the centroid context that fully incorporate its distinc-
tive features, but recover their single particle significance
in the limiting case in which the bunch as a whole moves
rigidly. At every location in the beamline, every trajectory
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in the two dimensional phase space is mapped into a point
on some unit circle, where it is located by a phase angle
which can accordingly be taken to ‘advance’ from beam-
line location to location. Choosing the mapping to be lin-
ear makes families of trajectories comprising whole circles
generically images of ellipses in the phase space observ-
ables. Both the ellipse and the phase angle contain non-
redundant information about the motion, and are inextrica-
bly linked in that the phase angle and hence the phase ad-
vance is undefined without an associated ellipse. For linear
motion choosing an ellipse at one beamline location deter-
mines an ellipse—its image under the transport map—at all
other locations. It is usually especially useful to choose an
initial family of geometrically similar ellipses whose shape
has a conceptually or mnemonically useful property, like
the same periodicity as the beamline itself, and/or, the dis-
tinction that it describes the bunch ‘beam envelope’. Here
the ellipse in phase space is a family of centroid trajecto-
ries, which coulde.g., correspond to the ensemble of tra-
jectories generated by a specially distributed jitter source
at the beginning of the beamline; it is emphatically not di-
rectly related to the family of collectively interacting sin-
gle particle trajectories that constitute the beam envelope.
The fact that linear transport maps ellipses into ellipses is
all that we use; we do not assume the invariance of the el-
lipse area, even though it was this aspect of the single parti-
cle case that historically drew attention to ellipses in phase
space. Phase advance is necessary to then fully describe
the transport of the particular trajectories on the ellipse.

To be more explicit, the phase space centroid, or beam-
average position〈x(s)〉 and angle〈x′(s)〉) coordinates at
machine locations, is parameterized by the non-restrictive
ansatz [ 〈x(s)〉

〈x′(s)〉
]

=
√

2a(s)A(s)
[

cos
(
ψ(s)

)
− sin

(
ψ(s)

)] (1)

that linearly maps all trajectories into unit circles, on which
they are located by an advancing phaseψ(s). A(s) is a
2 × 2 matrix; taking it to have unit determinant defines the
numerical ‘amplitude’ factor

√
a(s). Since circles are in-

variant under rotation the re-definitionA → AO, where
O is a rotation matrix, just re-defines the phase function;
thusA has only two meaningful parameters. A set of tra-
jectories at an ‘initial’ beamline location constructed to fill
a unit circle and mapped inx, x′ space into a fiducial el-
lipse that is geometrically characterized by the symmetric
matrixa0A0A

T
0, will be transported at each downstream lo-

cation into a specific ellipse whose geometric form is given
by aAAT. By linearity the shape depends only on the ini-
tial shape parametersA0A

T
0 and the area scales likea0, i.e.,
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only the ratioa(s)/a0 is characteristic of the transport.
Since the circle that the ellipse is mapped to is invari-

ant under rotations, to associate specific trajectories with
phase anglesψ(s), and hence be able to speak of a ‘phase
advance’ requires a further but final convention. The histor-
ical choice made by Courant and Snyder for single particles
assigns a90◦ phase everywhere in the beamline to a trajec-
tory on thex′-axis, or equivalently imposesA12(s) ≡ 0. It
has the unique property that zeros inx are180◦ apart for
any choice of the initial ellipse geometry.

The centroid transfer matrixR now satisfies√
2a0RA0 =

√
2aAO(∆ψ), giving the representa-

tion

R = ag

√
E0

E
AOA−1

0 (2)

where the amplitude growth/damping factorag =√
aE/a0E0 parameterizes thespecificamplitude shift (ex-

clusive of ‘adiabatic’ damping due to acceleration).
In the single particle limit, where the bunch either is a

single particle or behaves like one (i.e., is rigid) ag → 1

andA → 1√
β

(
β 0
−α 1

)
, whereβ andα are the familiar

functions describing pseudo-harmonic oscillations in the
quadrupole magnetic focusing field for the initial condition
A0. In the single particle caseA is local—it depends only
on the beamline location at which the trajectory is observed
and not on the oscillation’s prior history, and the phase ad-
vance isadditive, i.e., the amount by which it increases as
one moves along the beamline is independent of the initial
location. Directly equivalent to these properties is thefac-
torizationof theR matrix:R(a → b) = R(c → b)R(a →
c) for any intermediate pointc. For generic centroid oscil-
lations factorization/locality is not true, and caution should
be applied to avoid being misled by the product decompo-
sition in (2). Centroid transport depends on the detailed
internal initial state of the bunch, something which is not
completely specified by giving its centroid phase space co-
ordinates alone; in fact without a specification of the sup-
pressed internal variables, any centroid transfer map is seri-
ously ill-defined. In the linear case it is convenient in prac-
tice to take all transfer matrices to correspond to rigid exci-
tations (kicks or instantaneous displacements) of a homo-
geneous bunch (one whose internal transverse coordinates
all line up with the centroid). Superpositions of appropri-
ately distributed excitations then can describe any coher-
entβ-tron oscillation. The set of centroid transfer maps in
the space of centroid variables thus constitutes a complete
physical description, at the price of tolerating hysteresis, or
non-factorization/non-locality, at a basic level.

An instructive and practical application is to consider
‘steering-out’ a coherent oscillation by applying appro-
priate kicks in some neighborhood in the beamline. A
rigidly excited oscillation (as with dipole magnets) can be
superposed to precisely cancel an incoming oscillation at
some point; however, since the internal bunch distribution
in the incoming oscillation would generically differ from

the homogeneous distribution associated with the excita-
tion and accordingly transport differently, the cancellation
will break down as the superposition propagates. An oscil-
lation will grow ‘spontaneously’, a behavior impossible to
achieve if theR matrix were to factorize.

It is frequently very useful to view theA matrix in
terms of its deviation from a fiducial referenceAr, which
in practice is usually chosen to be the single particle pe-
riodic lattice function already mentioned. Theoscilla-
tion ‘Bmag’B = 1

2 tr[A−1
r A(A−1

r A)T] is invariant down-
stream of an isolated discrepancy with respect to the ref-
erence, although the effectiveβ andα functions continu-
ously ‘beat’;

√
B2 − 1 is in fact the beat amplitude.B

is equivalently the average of the squares of the semi-
major and semi-minor axes of the ellipse correspond-
ing to the transport of an initial unit circle of trajecto-
ries in the normal coordinates defined byAr. The ad-
ditional variable completing the description is theβ-beat
phase or orientation angle of the anomalous ellipse incor-
porated asΨ in the parameterizationA−1

r A(A−1
r A)T =(

B +
√
B2 − 1 cosΨ −√

B2 − 1 sinΨ
−√

B2 − 1 sinΨ B −√
B2 − 1 cosΨ

)
. Collec-

tive and decoherence intrabunch effects produce a negli-
gible deviation inB − 1 in a lattice that is periodic and
‘smooth’ on the scale of theβ-tron wavelength (cf. Section
2). Therefore when applied to data,e.g.,B serves as a use-
ful indicator isolating effective magnetic strength errors. To
the extent to which this is the case the beat phase in an error
free region will advance according toΨ → Ψ + 2ψ, where
ψ is the single particle phase shift,i.e., is exclusiveof any
coherent phase shift. It is important not to ignore theβ-beat
phase since it is possible for a quadrupole strength error to
be manifested as a rapidΨ shift through−2 × the priorΨ
at the error, whileB,> 1 already due to an upstream error,
accidentally does not change. Note again that the oscilla-
tion or coherent ‘Bmag’ is inequivalent to and has nothing
direct to say about the beam envelopeBmag that expresses
the possible elevation of the matched equivalent emittance.

An alternative representation is sometimes used, will be
used in the next section, and is instructive to consider.
Two orthogonal oscillations are treated as having individ-
ual pseudo-phase-advances∆ψ1, 2 and ‘amplitudes’ζ1, 2.
The centroid ‘normalized’ transfer matrix

√
E

E0
A−1

r RAr 0 =
(
ζ2 cos(∆ψ2) ζ1 sin(∆ψ1)
−ζ2 sin(∆ψ2) ζ1 cos(∆ψ1)

)

(3)

= O(∆ψ+)
(
ζ2 cos(∆ψ−) ζ1 sin(∆ψ−)
ζ2 sin(∆ψ−) ζ1 cos(∆ψ−)

)
(4)

where∆ψ± = 1
2 (∆ψ1 ± ∆ψ2) are the average and (half)

difference pseudo-phase-advances. The termpseudo-phase
advance is used to emphasize that even in the single par-
ticle case where theR matrix factorizes, these ‘phase
advance’-like parameters are not additive, in the sense de-
scribed above. The phase independent amplitude growth
ag =

√
ζ1ζ2| cos(2∆ψ−)|. It is reduced by apseudo-phase
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advance difference for fixedζ1, 2. Thatag → 1 in the single
particle limit implies a constraint among the parameters in
that case.B = 1

2 [(ζ1/ζ2) + (ζ2/ζ1)] /| cos(2∆ψ−)|. Thus
B > 1 reflects disparate ‘orthogonal amplitudes’, and/or
disparate pseudo-phase advances—this is perhaps the most
useful way to conceptualize oscillation, as opposed to enve-
lope,β-beating. Either conditionζ2 6≈ ζ1 or ∆ψ2 6≈ ∆ψ1

accordingly indicates a non-‘smooth’ lattice and significant
collective effects (cf. above and Section 2), or the presence
of effective magnetic field errors.

2 COLLECTIVE DYNAMICS

The beam dynamics of a longitudinally extended bunch in
which transverse dipole wakefields are the dominant intra-
bunch forces, reduces to the problem of the motion of a
‘string’ beam in which the variables are the centroid coor-
dinatesx(s; τ) andx′(s; τ), at longitudinal positionτ . The
restriction to a pure dipole wakefield makes an exact ‘hy-
drodynamic’ description possible;i.e., the dynamics closes
in terms of ‘slice’ first moments. Finite transverse emit-
tance and energy spread within-a-slice effects can be re-
covered after this problem is solved.

As already discussed, the problem of interest here may
be further reduced to a study of the transfer matrices
for rigid excitations in terms of the whole bunch cen-
troid, or the observableN particle slice average〈x(s)〉 =∫
dN(τ)x(s; τ)/N =

∫
dτ (dN/dτ)x(s; τ)/N , and sim-

ilarly for 〈x′(s)〉. Each slice freely oscillates due to
the initial dipole magnet impulse, to which is superposed
free oscillations originating in deflections occurring along
the entire length of accelerator through which the beam
has moved, which are in turn proportional to the charge
weighted accumulation of the instantaneous transverse off-
sets of the slices preceding it in the bunch, and the wake-
field function of their longitudinal distance:

x(s; τ ) = R12(s, s0; τ )∆x′ +Z s

s0

ds1R12(s, s1; τ )

Z
dN(τ1)

eW⊥(τ − τ1)

E(s1)
x(s1; τ1) (5)

and similarly with x′. R(s, s0; τ) is the single parti-
cle transverse transfer matrix for longitudinal positionτ ,
on which it depends significantly through the nominal en-
ergy spread arising from the accelerating rf waveform and
the longitudinal wakefield. Since the slice centroid we
are trying to find is related to the preceding slice cen-
troids in the bunch, (5) is a linear integral equation to
be solved. It is convenient to combinex and x′ into
a new complex variable by settingx − i(βx′ + αx) =
−i√E0/E β∆x′ exp

(
i∆ψ(s, τ)

)
ξ(s, τ). It satisfies

ξ(s, τ) = 1 − i

2

∫ s

s0

ds1
β

E

∫
dN(τ1) eW⊥(τ − τ1)

× {exp [−i (ψ(s1, τ) − ψ(s1, τ1))] ξ(s1, τ1)
+ exp [−i (ψ(s1, τ) + ψ(s1, τ1))] ξ∗(s1, τ1)} (6)

ψ(s, τ) is the single particle phase, and theτ de-
pendence ofβ has been suppressed on the grounds

that it should be negligible in a viable, at least ap-
proximately periodic, lattice. The centroidξ(s) ≡
exp

(−iψ(s, 0)
) 〈

exp
(
iψ(s, τ)

)
ξ(s, τ)

〉
whereτ = 0 (the

‘center’ of the bunch, say) is chosen to define a refer-
ence single particle phase advance. The centroid trans-
fer matrix in the ‘two-phase’ form (3) is then fixed since
ζ1 exp[i(∆ψ1 − ∆ψ)] = ξ(s) for ψ(s0, τ) = −90◦, and
ζ2 exp[i(∆ψ2 − ∆ψ)] = ξ(s) for ψ(s0, τ) = 0.

The overall factor in the kernel in (6),∫
ds (β/E)NeW⊥, is ∼ the (Courant-Snyder)α-

shift of the bunch tail due to the defocusing effect of the
wakefield, and scales its excitatory strength.

The first term in the kernel has the factor
exp [−i (ψ(s1, τ) − ψ(s1, τ1))], which oscillates with
the ‘tail-head’ phase advancedifference, and is indepen-
dent of the absoluteβ-tron phase. It is the agent for BNS
‘damping’.

The second term factor oscillates like thesum of ‘tail’
and ‘head’ phase advances and flips its sign for rigid ex-
citations with a90◦ initial phase difference. It is strongly
suppressed relative to the first term if the lattice is peri-
odic or ‘smooth’ over several cycles at twice the nominal
β-tron phase advance, and may be neglected in the leading
eikonal approximation. Thus the dominant wakefield effect
is a phase independent phase shift= arg ξ(s), and ampli-
tude growth/damping shiftag = |ξ(s)|. To the extent this
approximation is accurateB = 1.

Although interestinggedankenphysik, the asymptotic
‘long’ machine results that have also been obtained [1] are
not quantitatively germane to any known extant or seri-
ously contemplated machine. The perturbation series, in
which distributed (non-macroparticle)n + 1 particle-like
contributions, each associated with an ordern in theα-shift
are superposed, is straightforward. Under SLC conditions
(N ≈ 4 · 1010, τrms ≈ 1 mm,W ′

⊥ ∼= 4.1 GeV/(1010 mm-
m2) ), nmax = 5 suffices for∼ 0.1% accuracy in the cen-
troidR-matrix.

A companion paper [2] provides details of the SLC
“diagnostic pulse” implementation and examples of high
bunch current centroid data. Another [3] is a case study in
which the coherent oscillation physics discussed here con-
tributed crucial diagnostic insight.
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