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Abstract

In this work, we present a formalism by considering the
perturbations in the moments of a bunched beam for the
equivalent circuit model to include all harmonics of the
synchrotron oscillation in a beam-cavity interaction sys-
tem.  The linear coupling among all longitudinal modes
under the influence of a narrow-band impedance can be
naturally incorporated in this new approach.  We used this
method to re-examine the coupling between the dipole and
the quadrupole modes.  The dispersion relation obtained by
this new method was compared with that derived from the
linearized Vlasov equation up to the second harmonic of
the synchrotron motion.  We found excellent qualitative
agreements between these two approaches.  

1 INTRODUCTION

     In designing the radio frequency (rf) system of an ac-
celerator or storage ring, the interaction between the
charged particle beam and the rf cavity is often modeled by
an equivalent circuit.  Because of its simplicity and its
convenience to incorporate with engineering designs, the
applications of this kind of modeling can range from a
simple estimation of power requirement to complicated
studies of system stability and control designs.  In a more
elaborated approach, a beam-cavity interaction system can
also be studied by using Vlasov-Maxwell equations to
include the dynamics of particles in the beam.  For exam-
ple, the Robinson instability in circular machines was
initially investigated via an equivalent circuit model and
later on studied by using Vlasov equations.[1-3]   One of
the advantages of using the kinetic theory approach over
the equivalent circuit model is that the coupling among all
synchrotron harmonics are covered in the formalism in a
natural way.  In all the equivalent circuit models utilized
so far, only the dipole modes have been included.  The
reason is because a bunch of particles is modeled as a sin-
gle macro-particle with no internal degree of freedom.
     For narrow-band resonators, only those synchrotron
sidebands near the resonant frequencies of the cavity con-
tribute significantly to the beam-cavity interaction.  It has
been discussed previously, that for a tightly bunched beam
interacting with a highly or moderately detuned narrow-
band resonator, the neglect of higher synchrotron harmon-
ics is a good approximation.  However, for long beam
bunches or small cavity detuning, higher synchrotron
harmonics may affect the stability appreciably; therefore,
at least a few of the higher synchrotron harmonics should
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be considered.[3]  The purpose of this study is to formu-
late, at least in the linear regime, an approach in the
equivalent circuit model that can take higher synchrotron
harmonics into account.  As will be discussed in the fol-
lowings, one can incorporate any number of synchrotron
harmonics in the equivalent circuit model by using the
moment method.[4]  A general moment method has been
previously used to study transverse beam dynamics.[5,6]
The "moment" we will study here is the moment in the
configuration space of a bunched beam, it does not include
all the moments in the phase space as some previous stud-
ies did.  For simplicity, we shall concentrate on the case
below transition, and we limit our study to the coherent
mode, or the "0" mode, stability of a multi-bunch system,
i.e., the coupled-bunch modes are not considered at here.

2 LINEARIZED EQUATIONS OF
PARTICLE MOTION

     The equation of synchrotron motion of a beam particle
is

    
d2ϕ
dt2 = ω s

2

Vscosψ s

Vsin ψ s + φv − ϕ( ) − Vssinψ s[ ],  (2.1)

where ϕ  is the phase deviation of the particle's position
with respect to the synchronous phase ψ s , t  is the time,

ω s = [− qηhVscosψ s (2πm0γR2 )]1/ 2 , is the synchrotron
frequency at equilibrium, q  and m0  are the charge and the
rest mass of a beam particle, respectively, Vs  is the maxi-

mum rf voltage on the cavity when the system is in
steady state, V  is the voltage on the cavity, φv  is the de-
viation of the voltage phase from its equilibrium, γ  is

the ratio between the total energy and the rest mass of the
synchronized beam particle, h  is the rf harmonic number,
η = γ t

−2 − γ −2 , is the momentum slip factor for a ma-
chine with transition gamma γ t , and R is the effective
machine radius.  Assuming that ϕ  and φv  are small quan-

tities, V = Vs + V̂  with V̂ << Vs , Eq. (2.1) and its first

order integral can be linearized to obtain

           
d2ϕ
dt2 + ω s

2ϕ ≈ ω s
2 φv + V̂

Vs

tanψ s







,            (2.2)

and

 
dϕ
dt







2

≈ −ω s
2ϕ 2 − ω s

2ϕ 2 V̂

Vs

− φvtanψ s







+ H0 ,     (2.3)

where H0 = ω s
2ϕa

2 , and ϕa  is the maximal excursion of

the particle in the unperturbed rf potential well.
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3 THE MOMENTS AND THEIR EQUATIONS
OF MOTION

     We assume that the phase space distribution of parti-
cles in a bunch, f z, vz , t( ), is a steady part f 0 z, vz( )  plus

a perturbation f1 z, vz , t( ), i.e., f f f= +0 1 , where z  is

the coordinate along the bunch length, and vz  is the axial

speed of a beam particle.  The origin of the coordinate is
chosen to coincide with the bunch center in the steady
state which is synchronized with the rf phase.  Assuming
there are M  identical bunches in the ring, the h th har-
monic of the beam current Ih  is then given by

                Ih = Ih
(0) + Idc

in

n!n=1

∞
∑ ϕ n

p
 ,              (3.1)

where Idc = qMv0 N / (2πR), is the averaged (dc) beam

current, v0  is the average particle speed, i = −1 , N  is

the total number of particles in one bunch,

             Ih
(0) = Idc

N
eihz / R

−∞

∞

∫
−πR

πR

∫ f 0 z, vz( )dvzdz ,        (3.2)

            ϕ n

p
= R

Nh
ϕ n f1 z, vz , t( )

−∞

∞

∫
−ϕm

ϕm

∫ dvzdϕ ,      (3.3)

is the n th moment due to the perturbation, ϕm  is the

half-length of the bunch in the rf phase, and use has been

made of the relation ϕ = h z R .  The n th moment ϕ n

of the particle distribution is defined according to

            ϕ n = R

Nh
ϕ n f z, vz , t( )

−∞

∞

∫
−ϕm

ϕm

∫ dvzdϕ ,         (3.4)

     Assuming that ϕ n = ϕ n

0
+ ϕ n

1
, i.e., ϕ n

consists of a steady part ϕ n

0
 and a small perturbation

part ϕ n

1
; applying Eqs. (2.2) and (2.3), we can derive

the following linearized equations for moments ϕ n

1
:[4]

       
d2 ϕ

1

dt2 + ω s
2 ϕ

1
= ω s

2 φv + V̂

Vs

tanψ s







,        (3.5)

d2 ϕ 2

1

dt2 + 4ω s
2 ϕ 2

1
= −2ω s

2ϕm
2 V̂

Vs

− φvtanψ s







,  (3.6)

and

      

     

+ tan
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    (3.7)

for m = 2,3....

     The analysis is then proceeded further by identifying

the perturbed moment ϕ n

1
 in Eqs. (3.5)-(3.7) with

ϕ n

p
 in Eq. (3.1).  The h th harmonic of the beam cur-

rent can be written in the polar coordinate notation as

Ih = Ib t( )e− iφb t( ) ,

where Ib t( ) = Ib0 + Ib1, Ib0 = Ih
(0) , Ib1 ≈ Ih,2 j

(1)

j =1

∞
∑ ,

                          φb ≈ − Ih,2 j +1
(1)

j =0

∞
∑ Ih

(0) ,                      

                    Ih,2 j
(1) = −1( ) j Idc ϕ 2 j

1
2 j( )! ,              

               Ih,2 j +1
(1) = −1( ) j Idc ϕ 2 j +1

1
2 j + 1( )! ,

and Ib1 << Ib0 .  If only the first two lowest moments (the

dipole and the quadrupole modes) are retained in the ex-
pansion of Ib1  and φb , we have

                      Ib1 ≈ Ih,2
(1) = − Idc ϕ 2

1
2,              (3.8)

and             φb ≈ − Ih,1
(1) Ih

(0) ≈ − Idc ϕ
1

Ih
(0) .         (3.9)

4 THE EQUIVALENT CIRCUIT MODEL

     In the equivalent circuit model, an rf cavity is envi-
sioned as a parallel RLC  circuit; the applied rf power
source and the circulating beam current are envisioned as
currents ig  and ib , respectively.  Using Kirchhoff's law,

one can derive that the total voltage on the cavity satisfies
the differential equation

           
d2v

dt2 + 2α dv

dt
+ ω r

2v = 2αRs
d

dt
ig + ib( ) ,       (4.1)

where v  is the total voltage, α = ω r 2Q( ), Q  is the
quality factor of the cavity, ω r  is the resonant frequency
of the cavity, and Rs  is the shunt resistance.  Substituting

 ig = Ig exp −i ωg + ψ g( )t{ },
  

            ib = Ib0 + Ib1(t)[ ]exp −i ωg + φb (t)[ ]t{ } ,   

and      v = Vs + V̂(t)[ ]exp −i ωg + ψ v + φv (t)[ ]t{ } ,

in Eq. (4.1), we can derive the following linearized equa-
tions for V̂  and φv :

 
dV̂

dt
+ αV̂ = −αRs Ib1cosψ v + Ib0 φb − φv( )sinψ v[ ] ,  (4.2)

and

      

dφv

dt
+ αφv = −αRs Ib0cosψ v

Vs

     × φb − Ib1 Ib0( )tanψ v + V̂ Vs( )tanψ v[ ] ,
     (4.3)
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where ωg  is the frequency of the driving rf, φv  and φb  are

the phase deviations of v  and ib  from their steady states,

respectively.  In arriving at Eqs. (4.2) and (4.3), we have
assumed that the system is in tune, i.e. ψ g = ψ v , and we

have chosen a rotating polar coordinate system such that
the steady state beam current Ib0  is on the real axis.

Also, in deriving Eqs. (4.2) and (4.3), we have assumed
that for high- Q  and high frequency resonators, α << ωg ,

and that the derivatives of the quantities d[v exp(iωg )] d t

and ib exp(iωg ) are negligible when compared, respec-

tively, with the products of these quantities with ωg .

Eqs. (3.5), (3.6), (4.2) and (43) are the basic equations for
studying the beam-cavity interaction.

5 COMPARISON WITH KINETIC THEORY

     We now compare the dispersion relation derived from
the moment method with that obtained from the Vlasov
equation.  We shall study the dispersion relations up to
the second moment, or to the second harmonic of the syn-
chrotron oscillation.
      The complete set of equations, up to the second mo-
ment, are Eqs. (3.5), (3.6), (3.8), (3.9), (4.2) and (4.3).
Making Laplace transformations to Eqs. (3.5), (3.6), (4.2)
and (4.3); using Eqs. (3.8) and (3.9), one can derive a set
of simultaneous linear algebraic equations for the un-

knowns ˆ̃V , φ̃v , Ĩb1 , and φ̃b , where the symbol ~  indi-

cates the Laplace transformed quantities.  Equating the
determinant of the simultaneous algebraic equations to
zero yields the dispersion relation:

       
s6 + 2αs5 + 5ω s

2 + α 2sec2φ y( )s4

    + 10αω s
2s3 + a2s2 + 8αω s

4s + a0 = 0 ,
        (5.1)

where s  is the Laplace transformation variable,

a s y

s

0 4 4 2 2
1 2

2
1 2

= − +( )
+

ω α φ λ µ µ

λ µ µ ψ

[

]

sec2

               sec2  ,
            (5.2)

     a2 = 4ω s
4 + 5α 2ω s

2sec2φ y − ω s
2λ2 µ1 + 4µ2( ) ,    (5.3)

λ = αRs Ib0 Vs , µ1 = − Idc Ib0 , and µ2 = Idcϕm
2 4Ib0( ) .

     The derivation of the dispersion relation from the lin-
earized Vlasov equation, including the second harmonic of
the synchrotron frequency, has been presented in a previ-
ous work.[6]  The result is quoted here in a slightly differ-
ent notations:

       
s6 + 2αs5 + 5ω s

2 + α 2sec2φ y( )s4

    + 10αω s
2s3 + b2s2 + 8αω s

4s + b0 = 0 ,
         (5.4)

where

  
b0 = 4ω s

4 α 2sec2φ y − λ2 F1µ1 + 4F2 ϕm
2( )µ2[ ]{

             + 4F1F2 ϕm
2( )λ2µ1µ2sec2ψ s} ,

    (5.5)

     
b2 = 4ω s

4 + 5α 2ω s
2sec2φ y

                  − ω s
2λ2 F1µ1 + 4 4F2 ϕm

2( )µ2[ ] ,       (5.6)

     Fm = 4 Jm
hr

R












2

0

∞

∫ df 0

dr
dr

h

R






2

f 0 r( )r
0

∞

∫ dr  ,

is the reduced form factor[3], r =[z2 + (vz / ω s )2]1 2 , and
Jl x( )  is the Bessel Function of the l th order.  The values
of F1  and F2  have been calculated and charted for some

different phase space distributions.[3]  In general, the
value of F1( F2 )  decreases (increases) when the bunch
length increases.  For very short bunch lengths, F1  and
F2  have values near 2.0 and 0, respectively.  At the

bunching factor of 0.5, most distributions have the values
of F1  near 1.3 and the values of F2  near 0.17.  For short

bunch length, F2  is roughly proportional to ϕm
2 .

     Thus, by comparing Eqs. (5.1)-(5.3) with Eqs. (5.4)-
(5.6), we find that the dispersion relation derived from the
equivalent circuit is the same as that inferred from the lin-
earized Vlasov equation except for the factors F1  and

4F2 ϕm
2 which depend on the detail of the perturbation in

the phase space.

6 CONCLUSIONS

     We have formulated an approach, in the regime of
linear approximation, to incorporate all harmonics of syn-
chrotron oscillation in the equivalent circuit model of
beam-cavity interaction by considering the perturbed mo-
ments of a bunched beam.  We found good qualitative
agreements in comparing the dispersion relations obtained
from this new approach with that derived from the
linearized Vlasov equation up to the second synchrotron
harmonic.    
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