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Abstract

It will be shown that starting from a coordinate system
where the 6 phase space coordinates are linearly coupled,
one can go to a new coordinate system, where the motion is
uncoupled, by means of a linear transformation. The origi-
nal coupled coordinates and the new uncoupled coordinates
are related by a6 × 6 matrix,R. It will be shown that of
the 36 elements of the6 × 6 decoupling matrixR, only 12
elements are independent. A set of equations is given from
which the 12 elements ofR can be computed from the one
period transfer matrix. This set of equations also allows the
linear parameters, theβi, αi, i = 1, 3, for the uncoupled
coordinates, to be computed from the one period transfer
matrix.

1 THE DECOUPLING MATRIX, R

The particle coordinates are assumed to bex, px, y, py, z,
pz. The particle is acted upon by periodic fields that couple
the 6 coordinates. The linearized equations of motion are
assumed to be

dx

ds
= A(s)x

x =




x
px

y
py

z
pz



, (1-1)

where the6 × 6 matrixA(s) is assumed to be periodic in
s with the periodL. Note that the symbolx is used to
indicate both the column vectorx and the first element of
this column vector. The meaning ofx should be clear from
the context. The6 × 6 transfer matrix T(s, s0) obeys

x(s) = T(s, s0)x(s0)
dT
ds

= A(s)T (1-2)

It is assumed that the motion is symplectic so that

TT = I, T =
∼
S
∼
T S (1-3)
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whereI is the6× 6 identity matrix,
∼
T is the transpose of T

and the6× 6 matrix S is given by

S =




0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0




(1-4)

The6×6 transfer matrix T(s, s0) has 36 elements. How-
ever, the number of independent elements is smaller be-
cause of the symplectic conditions given by Eq. (2-3).
There are 15 symplectic conditions or(k2 − k)/2 where
k = 6. The transfer matrix T then has 21 independent ele-
ments.

One can also introduce the one period transfer matrix
T̂(s) defined by

T̂(s) = T(s+ L, s) (1-5)

T̂(s) is also symplectic and has 21 independent elements.
One now goes to a new coordinate system where the par-

ticle motion is not coupled. The coordinates in the uncou-
pled coordinate system will be labeledu, pu, v, pv, w, pw.
It is assumed that the original coupled coordinate system
and the new uncoupled coordinate system are related by a
6 × 6 matrixR(s)

x = R u

u =




u
pu

v
pv

w
pw




(1-6)

R(s) will be called the decoupling matrix.
One can introduce a6× 6 transfer matrix for the uncou-

pled coordinates calledP (s, s0) such that

u(s) = P (s, s0)u (1-7)

and one finds that

P (s, s0) = R−1(s)T(s, s0)R(s0) (1-8)

one can also introduce the one period transfer matrixP̂ (s)
defined by

P̂ (s) = P (s+ L, s)
P̂ (s) = R−1(s+ L)T̂(s)R(s) (1-9)
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The decoupling matrix is defined as the6×6 matrix that
diagonalizeP̂ (s), which means here that when the6 × 6
matrix P̂ is written in terms of2 × 2 matrices it has the
form

P̂ =


 P̂11 0 0

0 P̂22 0
0 0 P̂33


 (1-10)

whereP̂ij are2 × 2 matrices.P̂ will be called a diagonal
matrix in the sense of Eq. (1-10).

The definition given so far of the decoupling matrixR,
will be seen to not uniquely defineR and one can add the
two conditions onR that it is a symplectic matrix and it is
a periodic matrix. The justification for the above is given
by the solution found forR(s) below.

Because T(s, s0) andR(s) are symplectic, it follows that
P (s, s0) andP̂ (s) are symplectic. Eq. (1-8) can be rewrit-
ten as

P (s, s0) = R(s) T(s, s0) R(s0)
P̂ (s) = R(s) T̂(s) R(s) (1-11)

It also follows that the2 × 2 matrices has 3 independent
elements as|P̂11| = |P̂22| = |P̂33| = 1. Eq. (1-12) can be
written as

T̂(s) = R(s) P̂ (s) R(s) (1-12)

Eq. (1-12) shows thatR has 12 independent elements, as
T̂ has 21 independent elements andP̂ has 9 independent
elements. AsR has only 12 independent elements, one can
suggest thatR has the form, when written in terms of2× 2
matrices,

R =


 q1I R12 R13

R21 q2I R23

R31 R32 q3I


 (1-13)

whereq1, q2, q3 are scalar quantities, theRij are2× 2 ma-
trices andI is the2 × 2 identity matrix. The matrix in Eq.
(1-13) appears to have 27 independent elements. However,
R is symplectic and has to obey the 15 symplectic condi-
tions, and this reduces the number of independent elements
to 12. The justification for assuming this form ofR, given
by Eq. (1-13), will be provided below where a solution for
R will be found assuming this form forR.

Using Eq. (1-13) forR and the symplectic conditions,
one can, in principle, solve Eq. (1-12) forR andP̂ in terms
of the one period matrix̂T. This was done by Edwards and
Teng[1] for motion in 4-dimensional phase space where
T̂ has 10 independent elements,R has 4 independent el-
ements and̂P has 6 independent elements. An analytical
solution of Eq. (1-12) for the 6-dimensional case was not
found. However, a different procedure for findinĝP and
R will be given by finding the eigenvectors of̂P , using the
eigenvectors of the one period matrix,T̂.

The2×2 matricesP11. P22, P33 which make upP̂ each
have 3 independent elements and can be written in the form

P̂11 =
[

cosψ1 + α1 sinψ1 β1 sinψ1

−1/γ1 sinψ1 cosψ1 − α1 sinψ1

]

γ1 = (1 + α2
1)/β1 (1-14)

with similar expressions for̂P22 and P̂33 Eq. (1-14) and
the similar expressions for̂P22, P̂33 can be used to define
the three beta functionsβ1, β2 andβ3.

2 THE LINEAR PARAMETERS β,α, AND ψ AND
THE EIGENVECTORS OF THE TRANSFER

MATRIX

In this section, the eigenvectors of the one period transfer
matrix, P̂ , will be found and expressed in terms of the lin-
ear periodic parametersβ, α andψ. These will be used
below to compute the linear parameters from the one pe-
riod transfer matrix̂T. They will also be used to find the
three emittance invariantsε1, ε2 andε3 and to express them
in terms of the linear parametersβi, αi, i = 1, 3.

The uncoupled transfer matrix obeys

d

ds
= P (s, s0) = B(s) P (s, s0)

B = R A R+
dR

ds
(2-1)

This follows from Eq. (1-2) and Eq. (1-11).
One sees from Eq. (2-1) thatB(s) is a periodic matrix,

B(s+L) = B(s). It can also be shown thatB is a periodic,
diagonal matrix similar tôP . See [6] for details.

As the2×2 matrixB11 is periodic, one can show[2] that
the eigenvector of the transfer matrix foru is

u1 =
[

β
1/2
1

β
1/2
1 (−α1 + i)

]
exp(iψ1)

'
u
∗
1 S u1 = 2i (2-2)

with the eigenvalueλ1 = exp(iµ1). β1(s), α1(s) are peri-
odic functions and the phase functionψ1 = µ1s/L+ g1(s)
whereg1(s) is periodic.

One can now write down the eigenvectors of theP̂ ma-
trix using Eq. (2-2). These eigenvectors will be called
u1, u2, u3, u4, u5, u6, each of which is a6× 1 column vec-
tor with the eigenvaluesλ1 = exp(iµ1), λ3 = exp(iµ2),
λ5 = exp(iµ3), λ2 = λ∗1, λ4 = λ∗3 andλ6 = λ∗5.

3 COMPUTING THE LINEAR PARAMETERS β,
α,ψ FROM THE TRANSFER MATRIX

An important problem in tracking studies is how to com-
pute the linear parameters,β, α, ψ, defined in section 3,
from the one period transfer matrix. The one period trans-
fer matrix can be found by multiplying the transfer matri-
ces of each of the elements in a period. A procedure is
given below for computing the linear parameters, which
also computes the decoupling matrixR from the one pe-
riod transfer matrix.

The first step in this procedure is to compute the eigen-
vectors and their corresponding eigenvalues for the one pe-
riod transfer matrix̂T. This can be done using one of the
standard routines available for finding the eigenvectors of
a real matrix. T̂ is assumed to be known. In this case,
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there are 6 eigenvectors indicated by the 6 column vectors
x1, x2, x3, x4, x5 andx6. BecausêT is a real6× 6 matrix,
x2 = x∗1, x4 = x∗3, x6 = x∗5. The corresponding eigen-
value forx1 is λ1 = exp(iµ1) and the eigenvalue forx2

is λ∗1 = exp(iµ1). In a similar way,λ2, λ∗2 are the eigen-
values forx3 andx4, andλ3, λ∗3 are the eigenvalues forx5

andx6. One can show that (see [6] for details).

ψ1 = ph(x1)
1/β1 = Im(px1/x1) (3-1)

α1 = −β1Re(px1/x1)

whereIm andRe stand for the imaginary and real part,
andph indicates the phase.

Using Eq. (3-1), one can find the linear parametersβ1,
α1, andψ1 from the eigenvectorx1 of T̂. A procedure can
be given for computing the entireR matrix. See [6] for
details.

4 THE THREE EMITTANCE INVARIANTS

Three emittance invariants will be found for linear coupled
motion in 6-dimensional phase space. Expressions will be
found for these invariants in terms ofβi, αi. A simple
and direct way to find the emittance invariants is to use the
definition of emittance suggested by A. Piwinski[4] for 4-
dimensional motion. This is given by

ε1 = | ∼x1 S x|2 (4-1)

x is a6 × 1 column vector representing the coordinatesx,
px, y, py, z, pz. x1 is a 6 × 1 column vector which is
an eigenvector of the one period transfer matrixT̂. x1 is
assumed to be normalized so that

∼
x
∗
1 S x1 = 2i (4-2)

One first notes thatε1 given by Eq. (4-1) is an invariant
since

∼
x1 S x is a Lagrange invariant asx1 andx are both

solutions of the equations of motion. Eq. (3-1) then repre-
sents an invariant which is a quadratic form inx, px, y, py,
z, pz. This result can be expressed in terms of the linear pa-
rametersβ1, α1 by evaluatingε1 in the coordinate system
of the uncoupled coordinates. Since the uncoupled coordi-
nates, represented by the column vectoru, is related tox
by the symplectic matrixR,

ε1 = |∼u1 S u|2 (4-3)

u1 is an eigenvector of the one period matrix̂P , and one
sees that because of Eq. (1-11),

x1 = R u1 (4-4)

one can now use the result foru, given by Eq. (2-5) and
find that

ε1 =
1
β1

[
(β1pu + α1u)

2 + u2
]

ε1 = γ1u
2 + 2α1upu + β1p

2
u (4-5)

γ1 = (1 + α1)2/β1
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