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Abstract wherel is the6 x 6 identity matrix, T is the transpose of T

. . . and the6 x 6 matrix S is given by
It will be shown that starting from a coordinate system

where the 6 phase space coordinates are linearly coupled, 0 1 0 0 0 O
one can go to a new coordinate system, where the motion is -1 0 0 0 0 O
uncoupled, by means of a linear transformation. The origi- 0 0 0 1 0 O
nal coupled coordinates and the new uncoupled coordinates S= 0 0 -1 0 0 O (1-4)
are related by & x 6 matrix, R. It will be shown that of 0 0 0 0 0 1
the 36 elements of th& x 6 decoupling matrix, only 12 0 0 0 0 —1 0

elements are independent. A set of equations is given from

which the 12 elements dt can be computed from the one  The6 x 6 transfer matrix Ts, so) has 36 elements. How-
period transfer matrix. This set of equations also allows thever, the number of independent elements is smaller be-
linear parameters, thé;, o;, i = 1,3, for the uncoupled cause of the symplectic conditions given by Eq. (2-3).

coordinates, to be computed from the one period transf@here are 15 symplectic conditions Gr* — k)/2 where
matrix. k = 6. The transfer matrix T then has 21 independent ele-

ments.
One can also introduce the one period transfer matrix

1 THE DECOUPLING MATRIX, R T(s) defined by

The particle coordinates are assumed ta:bg,, v, py, z, T(s) =T(s + Ls) (1-5)

p.. The particle is acted upon by periodic fields that coupler(s) is also symplectic and has 21 independent elements.
the 6 coordinates. The linearized equations of motion are'q -\ goes to a new coordinate system where the par-
assumed to be ticle motion is not coupled. The coordinates in the uncou-
pled coordinate system will be labeledp.,,, v, p,, w, py.

do = A(s)x It is assumed that the original coupled coordinate system
ds and the new uncoupled coordinate system are related by a
* 6 x 6 matrix R(s)
Pz
= | 7], (1-1) v = Ru
Dy U
# Pu
p
: u = ; (1-6)
v
where the6 x 6 matrix A(s) is assumed to be periodic in w
s with the periodL. Note that the symbat is used to Dw

indicate both the column vectarand the first element of

this column vector. The meaning ofshould be clear from £(s) will be called the decoupling matrix.
the context. Thé x 6 transfer matrix Ts, so) obeys One can introduce @ x 6 transfer matrix for the uncou-

pled coordinates calleB(s, so) such that

:c;sT) = T(s,s0)z(s0) u(s) = P(s, so)u (1-7)
ds Als)T (1-2)  and one finds that
Itis assumed that the motion is symplectic so that P(s,50) = R (s)T(s, 50) R(s0) (1-8)
_ en one can also introduce the one period transfer matfix)
TT=1, T=STS (1-3) defined by
*Work performed under the auspices of the U.S. Department of En- ]?(S) B P(S +L, S) R
ergy. P(s) = R s+ L)T(s)R(s) (1-9)
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The decoupling matrix is defined as the 6 matrix that ~ with similar expressions fpﬁm and Py3 Eq. (1-14) and
diagona}lizeP(s), which means here that when thex 6  the similar expressions fdP,o, P33 can be used to define
matrix P is written in terms of2 x 2 matrices it has the the three beta functions;, 5> ands.
form

.| 00 2 THE LINEAR PARAMETERS #3, a, AND 4 AND
P=10 Po 0 (1-10) THE EIGENVECTORS OF THE TRANSFER
0 0 P MATRIX

whereP;; are2 x 2 matrices.P” will be called a diagonal |, this section, the eigenvectors of the one period transfer

matrix in the sense of Eq. (1-10). _ matrix, P, will be found and expressed in terms of the lin-
.The definition given so far of.the decoupling matfix ear periodic parameter$ o and«. These will be used

will be seen to not uniquely defing and one can add the o6, 10 compute the linear parameters from the one pe-

two conditions on® that it is a symplectic matrix and itis rjoq transfer matrixt. They will also be used to find the

a periodic matrix. The justification for the above is 9iVeNnree emittance invariangs, e, andes and to express them

by the solution found fof(s) below. in terms of the linear parametefs a;, i = 1, 3.
Because Ts, so) andR(s) are symplectic, it follows that 1,4 uncoupled transfer matrix obeys
P(s,s09) andP(s) are symplectic. Eqg. (1-8) can be rewrit-

tenas B % —  P(s,50) = B(s) P(s, 50)
P(S, 80) = R(S) T(Sv 80) R(SO) dﬁ
P(s) = R(s)T(s) R(s) (1-11) B = RAR+ — (2-1)

It also follows that the2 x 2 matrices has 3 independentyic t511ows from Eq. (1-2) and Eq. (1-11).
elements agPy1| = |Pao| = |Ps3| = 1. EQ. (1-12) can be

i One sees from Eq. (2-1) th&(s) is a periodic matrix,
written as

. L B(s+L) = B(s). ltcan also be shown th&t is a periodic,
T(s) = R(s) P(s) R(s) (1-12) dié\gonazl matr(ix)similar td”. See [6] for details.

Eqg. (1-12) shows thaR has 12 independent elements, as As the2 x 2 matrix By, is periodic, one can show[2] that
T has 21 independent elements afcas 9 independent the eigenvector of the transfer matrix fois

elements. AR has only 12 independent elements, one can

suggest thaR has the form, when written in terms 2t 2 _ ﬁi/Q .
matrices, U = 12 1) exp(ith)
ql Rz Ris o .
R=|Ra1 ¢l Ry (1-13) Uy Suy = 2 (2-2)
R31 Rs2 g3l

N with the eigenvalué; = exp(ip1). B1(s), a1(s) are peri-
whereqy, 2, g3 are scalar quantities, the;; are2 x 2ma-  qgjc functions and the phase function = 115/ L + g1 (s)
trices and/ is the2 x 2 identity matrix. The matrix in EQ. \yhereg, (s) is periodic.

(1-13) appears to have 27 independent elements. Howeverpone can now write down the eigenvectors of fhena-

R is symplectic and has to obey the 15 symplectic condkyix using Eq. (2-2). These eigenvectors will be called
tions, and this reduces the number of independent elemenyts ., ., u,, us, ug, each of which is & x 1 column vec-

to 12. The justification for assuming this form Bf given oy with the eigenvalues; = exp(ip1), A3 = exp(ipz),

by Eq. (1-13), will be provided below where a solution fory. — exp(ips), Ay = AT, Ay = A5 andAg = AL

R will be found assuming this form faR. 7

Using Eq. (1-13) fork and the symplectic conditions, 3 coMPUTING THE LINEAR PARAMETERS 3
one can, in principle, sqlve Eq. (1-12) fRrand P in terms «, ¥ FROM THE TRANSFER MATRIX '
of the one period matriX. This was done by Edwards and '

Teng[1] for motion in 4-dimensional phase space wherAn important problem in tracking studies is how to com-
T has 10 independent elements,has 4 independent el- pute the linear parameters, o, v, defined in section 3,
ements and” has 6 independent elements. An analyticalrom the one period transfer matrix. The one period trans-
solution of Eqg. (1-12) for the 6-dimensional case was nder matrix can be found by multiplying the transfer matri-
found. However, a different procedure for findidyand ces of each of the elements in a period. A procedure is
R will be given by finding the eigenvectors & using the given below for computing the linear parameters, which
eigenvectors of the one period matrix, also computes the decoupling matfikfrom the one pe-
The2 x 2 matricesP; ;. Pas, P33 which make up? each  riod transfer matrix.
have 3 independent elements and can be written in the formThe first step in this procedure is to compute the eigen-
vectors and their corresponding eigenvalues for the one pe-

Py, = |9 Y1 + aasingy Prsingy riod transfer matrixT. This can be done using one of the
—1/msingy cosh1 — o sinyy standard routines available for finding the eigenvectors of
o= (1+ad)/p (1-14) a real matrix. T is assumed to be known. In this case,
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there are 6 eigenvectors indicated by the 6 column vectors
1, X9, T3, x4, vs aNdzg. Becausd is arealé x 6 matrix,

xe = 7, x4 = 2%, v¢ = xf. The corresponding eigen- [
value forz; is Ay = exp(iu1) and the eigenvalue fars
is A\f = exp(iu1). In a similar way,\z, A5 are the eigen- 2
values forzs andz4, andAs, A5 are the eigenvalues fas;
andzg. One can show that (see [6] for details). 3]
Y1 = ph(xy) [4]
1/81 = Im(pg/z1) (3-1)
o = —piRe(py1/r1) 5]

where Im and Re stand for the imaginary and real part,
andph indicates the phase. [

Using Eqg. (3-1), one can find the linear parametérs
o1, andy; from the eigenvectar; of T. A procedure can
be given for computing the entir® matrix. See [6] for
details.

4 THE THREE EMITTANCE INVARIANTS

Three emittance invariants will be found for linear coupled
motion in 6-dimensional phase space. Expressions will be
found for these invariants in terms of, «;. A simple
and direct way to find the emittance invariants is to use the
definition of emittance suggested by A. Piwinski[4] for 4-
dimensional motion. This is given by

€1 = | :’El S£C|2 (4'1)

x is a6 x 1 column vector representing the coordinates
Dz Yy Pys %, D= @1 IS @6 x 1 column vector which is
an eigenvector of the one period transfer maftixz; is
assumed to be normalized so that

T, Sai=2i (4-2)

One first notes that; given by Eq. (4-1) is an invariant
sincez; S zis a Lagrange invariant as, andx are both
solutions of the equations of motion. Eq. (3-1) then repre-
sents an invariant which is a quadratic formeirp,, v, py,

z, p-. This result can be expressed in terms of the linear pa-
rameterss;, a; by evaluatinge; in the coordinate system

of the uncoupled coordinates. Since the uncoupled coordi-
nates, represented by the column veatpis related tar

by the symplectic matrix,

€1 = |51 S u|2 (4'3)

u; is an eigenvector of the one period matfx and one
sees that because of Eq. (1-11),

Tl = R U1 (4-4)

one can now use the result far given by Eq. (2-5) and
find that

1
a = — |(Bipu+ o)+

B1
e = mu®+ 2aup, + Bip? (4-5)
o= (1+a1)’/A
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