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This paper studies the particle motion when the tune is in b, = —yjoﬁy(ﬂwﬁy)zal/p
the stable region close to the edge of linear sum resonance
stopband. Results are found for the tune and the beta furfdN® can assume that has the form

tions. Results are also found for the two solutions of the

equations of motion. The results found are shown to be ™ = As exp(ivasta) + Y | Ar exp(ive,0y)
also valid for small accelerators where the large accelerator . r#e
approximation may not be used. Ver = Vas+n, nanintegern # 0 (2-3a)

where for small enough,, A, < As andv,s — vy
for a; — 0. For the corresponding form fay, one might
This paper studies the motion of a particle whose tune gssume for,
near an edge of a linear sum resonance stopband. It is

1 INTRODUCTION

assumed that the tune is not near any other linear reso- My = ZBr exp(ivy,fy)
nance, and the motion is dominated by the linear sum res- "
onance. It is assumed that the linear sum resonance is be- Vyr = Vas+1 (2-3b)

ing driven by a skew quadrupole field perturbation. Whe'i}vhereB < A, for small enough,
the unperturbed tune,, v,o is close to the resonance line ;i be seen below, that the solution assumed fr

v + vy = g, ¢ being an integer, the particle motion can b&-; - (5_3p) s valid if one is not near the sum resonance
unstable. Results are found for the tune and the beta func- + v, = g, g being an integer. When,, 1, are close
Yy ’ . Yy

tions when the unperturbed tune is in the stable region be the sum resonance, + v, — ¢, then one of theB
y 1 T

close to an edge of the stopband. Results are also fouwm become as large ad, and this is theB, for which
for the two solutions of the equations of motion. Allthe,, """~ “qpicic shown below. Thus. one assumes
- s . . )

. yr
results found are shown to be also vaI|d.for small acceler%r 1, the solution with the form
tors where the large accelerator approximation may not be

used. See [14] for more details. ny = Bsexp(ivysfy,)+ ZBT exp(ivyrf,)
r#£S
2 RESULTS WHEN THE TUNE IS INSIDE THE _
Vys Vgs — ¢ (2-3c)
STOPBAND
Vyr = VgstMN, N # —q

It will be assumed that in the absence of the perturbing o

fields, the tune of the particle is given by, v,0, thex HereB, < A, but By ~ A,. Itis being assumed that
andy motions are uncoupled, and that the motion is stabliro, vyo are not close to any other resonance other than
whenv,, v, is close to the linesg + 1,0 = ¢, whereqg V= + vy = 4.

is an integer. It is assumed that a perturbing field is then Putting this assumed form fax;, n, into the differential

added which is given by the skew quadrupole field equations Eg. (2-2), and assuming for the initial guess
AB, = —DBpaiz N = Asexp(iv,b,;)
AB, = DBoa1y (2-1) ny = DBsexp(ivys0y) (2-4)
ay is the skew quadrupole multipole and = a; (s). By is Vys = Vas —q= —(q— Vas)
some standard field, usually the field in the main dipoles QIne finds that, see [14] for details,
the lattice.
The coupled equations of motion can be written as (V2 — yio)(yig — V.io) = 4V:cOVyO|AV3:|2
d? 9 1 [ )
dT:%nx T Vil = bﬂc Ny Al/w = E/O ds(ﬂwﬁy)a(al/p) (2'5)
d? exp|—i(Ve0bz + (¢ — vz0)0y)]
d—giny + Viony =by N (2-2) Y

To solve Eq. (2-5) one puts
*Work performed under the auspices of the U.S. Department of En- )
ergy. Vgs = VgsR — 19z
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wherev,sr andg, are both real, which gives the equation Let us assume that we start witky, o below the lower
) stopband edge and let, v,o approach the lower stopband
(Vasr =19z —Vz0)(q— Vasr +19z —vyo) = [Avz|” (2-6)  edge. The equation of the lower stopband edge is given by

Eq. (2-6) then gives q — Voo — Vyo = 2|Avy| (3-4)

whenu,g, vy arrive on the lower stopband edge, then

will arrive at the values, = 3 (40 + ¢ — vyo). Thus below

1
9 + [5((1 — Va0 — o)) = |Arg|?

1 1/2 the stopband edge one can write
9z = + {|AVI|2 - [E(q — Vg0 — VyO)]Q} (2'7) 1
Vg = 5(1/300 +q— VyO) — 0y (3'5)

Results can be found foy, andn, which are correct to
first order in the perturbation and whegy, vy is inside  whereé, — 0 whenv,g, v, arrive at the stopband edge.
the stopband or in the stable region near an edge of thée then find
stopbands,, n, are given by Egs. (2-3). For the mode

1
Vg —Vgo = E(q_VQ:O_VyO) _5:0
Ny = Asexp(ivgstys) + Z Ay exp(ivg,0;) 1
r#s q— Vg —Vyo = 5((] — Vz0 — VyO) + 0y (3'6)
my = Bsexp(ivysty) + ) Brexp(ivy6,) and Eq. (3-2) becomes
r#s
- = — - 1
GG (@) 50— va0 = v0)]? = 8% = |Au P
Vyr = Vgs+MN, N # —q 1
_ 1 3
Ver = Vzs+n, n#0 Op = {[i(q — Ugo — Vyg)]z — |Al/x|2} (3-7)

Results and details fay,, n, are given in [14]. ) ) )
Eq. (3-7) gives/, in the stable region near the stopband.

3 THE TUNE NEAR THE EDGE OF A STOPBAND It can bg put in another form that indicates the dependence
on the distance from,, v, to the stopband edge.

In this section, a result will be found for the tune in the Below the stopband, one writes

stable region outside the stopband but close to an edge of

the stopband. It will be shown that close to an edge of the €2 = q — 2[Avs| — vgo — vyo (3-8)

stopband the tune of the mode is given by wheree,, indicates the distance fromy, v, to the stop-

1 1 band edge which is given by Eq. (3-4). Whep, v, is
Ve = 5 (Voo + 4 = vyo)| = {ex| Avg [} on the stopband edge ang + v,0 = ¢ — 2|Av,| then
€z = |q £ 2|Avg| — vy — Vyo (31) €= 0.

Using Eq. (3-8) to replace— v,o — vyo by €5 + 2|Avy|

v, is the tune of the,, mode,e is the distance frony,y, in Eq. (3-7) one finds
vy to the edge of the stopband. In the the+ sign is for L
the upper edge, and the sign for the lower edge. When 0z = {€x(|Ava| + €2/4)}2 (3-9)
vzo, Vyo reaches the edge of the stopband, then0, and
Ve = 3(Vz0+ q— vyo) is the real part of the tune inside the
stopband.

Eq. (3-1) shows that near the stopband edgeyaries 1 N
rapidly with ¢,.. As one reaches the edge of the stopband, |V — 5 (a0 + ¢ —vyo)| = {ex(|Ava| +ex/4)}?

€, goes to zero andv,. /de, becomes infinite like, 2. _ _ _ i}

To find v, in the st/able region outside the stopband, o = la = 21Ave] = vao = vl (3-10)
where|q — vz0 — vyo| > 2|Av,|, one goes back to the wheree, is the distance from,,, v, to the stopband edge.
derivation given in section 2 for, inside the stopband, One uses the- sign for the upper stopband edge and-the
starting with sign for the lower edge.

Close to the stopband edge, whefe< |Av,| then Eq.
(Vo — 120)(q — Vo — vyo) = |Avg|? (3-2)  (3-10) gives the result

Eqg. (3-9) can then be written so as to hold both above and
below the stopband to give

Because of the condition tha is outside the stopband or 1
B4 P Ve — ~(vmo + 4 — vy0)| = {e |Ava /2 (3-11)

)
|g — vzo — vyo| > 2|Avy| (3-3) . _
Equations (3-10) and (3-11) give the tune of themode,
one sees that one must haye= 0. vz, near the stopband edge. The result for the tune afthe
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mode,v,, may be found by making the substitution —
Vyy Va0 — Vyo, Vyo — Va0, |AVz| — Ayl
If one varies the unperturbed tung,, v, so that the

2.

tune approaches the edge of the stopband, the tune on the

stopband edge depends on the value,@f v,,0 when the

unperturbed tune arrives at the stopband edge. The stop-

band edges are given by the two lines
Vo + vyo = q £ 2|Av|

where it is assumed thgf\v,| = |Ar,| = |Av| and the
+ sign is for the upper edge and thesign for the lower
edge.

The tune of thes, mode at the stopband edge is then

given by
1
Ve = E(V:co +q— VyO)
Ve = Ugot]|Av| (3-12)

where the+ sign is for the lower edge and the sign for
the upper edge.

The tune of thes, mode at the stopband edge is given by

vy = vy £ |Av|
One may note, that at the stopband edge

Uy + 1y Vzo + Vyo £ 2|Av|

Vetv, = q (3-13)

and they,, v, lies on the resonance line.
Egs. (3-6) and (3-7) can also be rewritten as, forithe
mode and below the resonance line,

Voo +0.5D {1 — [(2%”)2]' }

=

Vp =
D g — Vz0 — Vyo (3-14)
Av = Av, > Ay,

3.

Results for the beta functions of the normal modes,
Bz, By, in the stable region near the edge of a stop-
band. The results show that, 5, do not become
infinite whenwv,g, vy, approach the stopband edge,
unlessv,g, vy are near the half integer resonances
vy = m/2, orv, =n/2, m andn being integers.
Results for the 2 solutions of the equations of motion
in the stable region near a stopband edge and in the
unstable region.

4. The above results hold also for small accelerators,

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

Results for the beta functions near the edge of the stopband

are givenin [14].

4 COMMENTS ON THE RESULTS

9]

(10]

where the exact equations of motion have to be used
and the large accelerator approximation is not valid.
For small accelerators, one needs the restriction that
the perturbing field gradients do not shift the closed
orbit.
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