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Abstract

This paper studies the motion of a particle whose tune is
inside and near a linear half-integer stopband. Results are
found for the tune and beta functions in the stable region
close to an edge of the stopband. It is shown that the eigen-
values and the eigenfunctions of the transfer matrix are real
inside the stopband. All the results found are also valid for
small accelerators where the large accelerator approxima-
tion is not used.

1 INTRODUCTION

Inside a linear-half integer stopband the particle motion can
be unstable and grow exponentially. The eigenvalues and
eigenfunctions of the transfer matrix are shown to be real
inside the stopband. In the stable region near an edge of the
stopband, the tune varies rapidly and the beta function be-
comes infinite as the unperturbed tune approaches the edge
of the stopband. Results are found for the tune and beta
function in the stable region near an edge of the stopband.
It is found that the beta function becomes infinite inversely
as the square root of the distance of the unperturbed tune
from the edge of the stopband.

2 RESULTS WHEN THE TUNE IS IN THE
STOPBAND

It will be assumed that in the absence of the perturbing
fields, the tune of the particle isν0 and that the motion is
stable whenν0 is close toq/2, whereq is an integer.

It is assumed that a perturbing field is present which is
given on the median plane by

∆By = −G(s)x (2-1)

G(s) is periodic ins and contains the field harmonics that
can excite the stopband aroundν0 = q/2.

Introducingη defined by

η = x/β1/2, (2-2)

whereβ is the beta function of the unperturbed field, the
equation of motion can be written as

d2η

dθ2
+ ν2

0η = f

f = ν2
0β3/2∆By/Bρ (2-3)

f = −ν2
0β2Gη/Bρ

Bρ = pc/e, dθ = ds/ν0β

∗Work performed under the auspices of the U.S. Department of En-
ergy.

The final results found below are valid for small accelera-
tors that require the use of the exact linearized equations.
See [7] for details.

Eq. (2-3) can be written as

d2η

dθ2
+ ν2

0 = −2ν0b(θ)η

b(θ) =
1
2
ν0β

2G/Bρ (2-4)

Becauseb(θ) is periodic a solution forη will have the form

η = exp(iνsθ)h(θ) (2-5)

whereh(θ) is periodic. It is assumed that the tuneν0 will
change toνs because of the perturbing field. Thusη can be
assumed to have the form

η = As exp(iνsθ) +
∑
r 6=s

Ar exp(iνrθ)

νr = νs + n (2-6)

wheren is some integer butn 6= 0. For a zero perturbing
field the solution forη is η = A exp(iν0θ). Thus for small
perturbing fields it can be assumed that

νs ' ν0

Ar � As for r 6= s (2-7)

Putting Eq. (2-6) into Eq. (2-4), one obtains a set of equa-
tions for theAr

(ν2
r − ν2

0)Ar = 2ν0

∑
r

brrAr

brr =
1
2π

∫ 2π

0

dθ b(θ) exp(−iνrθ + iνrθ)

νr = νs + n (2-8)

It is assumed thatν0 is nearν0 = q/2, q being an integer.
The stopband is defined as the range ofν0 for which the
tune,νs, in the presence of the perturbation given by Eq.
(2-2) has a non-zero imaginary part. One can writeνs as

νs = νsR − ig (2-9)

It will be shown that inside the stopband, whereg 6= 0, then

νsR = q/2 (2-10)

This may be shown as follows. Letµ be the phase shift for
a period, andµ = 2πνs where the period has been assumed
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to be one turn or2π in θ. Let T be the transfer matrix for
one period. Then one has

cosµ =
1
2
(T11 + T22), (2-11)

and one sees thatcosµ is real even inside the stopband
since theTij are real. One also has

cosµ = cos 2π(νsR − ig) = cos(2πνsR) cosh(2πg)
+ i sin(2πνsR) sin(2πg) (2-12)

In order forcosµ to be real, one has to have eitherg = 0
or, if g 6= 0, 2πνsR = nπ, wheren is some integer. Thus,
inside the stopband whereg 6= 0,

νsR = n/2 (2-13)

In order to have continuity when the perturbation goes to
zero, one hasn = q and

νsR = q/2 (2-14)

Now let us return to the problem of computing the
growth factor,g, using perturbation theory. One sees from
Eq. (2-8) that whenν0 ' q/2, then one of theAr becomes
comparable toAs, and this is theAr for whichνr = νs−q,
νr ' −q/2. Thus in the above iterative procedure for find-
ing η, one will assume for the initial guess forη,

η = As exp(iνsθ) + As exp(iνsθ)
νs = νs − q (2-15)

From Eq. (2-8) one finds

(ν2
r − ν2

o)Ar = 2ν0brsAs + 2ν0brsAs (2-16)

νr = νs + n or νr = νs + n = νs − q + n

Forr = s andr = s one obtains 2 equations forAs andAs

(ν2
s − ν2

0)As = 2ν0bssAs

(ν2
s − ν2

0)As = 2ν0bssAs (2-17)

νs = νs − q

In Eq. (2-17), it has been assumed, for simplicity sake, that
bss = 0. This can be accomplished by redefiningν0 to be
ν0 + b0.

In order for Eqs. (2-17) to have a solution, one must have

(ν2
s − ν2

0 )(ν2
s − ν2

0 ) = 4ν2
0 |bss|2

νs = νs − q (2-18)

Eq. (2-18) determinesνs. If one writesνs = νsR − ig, one
finds[

(νsR − ig)2 − ν2
0

] [
(νsR − q − ig)2

]
= 4ν2

0 |∆ν|2
(2-19)

where∆ν = bss

∆ν =
1
4π

∫ L

0

ds β exp(−iqθ)G/Bρ (2-20)

νsR = q/2 (2-21)

(q/2 − ν0)2 + g2 = |∆ν|2 (2-22)

g = ±{|∆ν|2 − (q/2 − ν0)2
}1/2

3 TUNE NEAR THE EDGE OF A STOPBAND

In this section, a result will be found for the tune in the
stable region outside the stopband but close to one of the
edges of the stopband. It will be shown that close to the
edge of a stopband,

|ν − q/2| = {2|∆ν| |ν0 − νe|}1/2 (3-1)

ν is the tune in the presence of the gradient perturbation,
νe is the edge of the stopband,νe = q/2 ± |∆ν|. |∆ν| is
the half-width of the stopband. Eq. (3-1) shows that when
ν0 is close to an edge of the stopband,νe, ν varies rapidly
with ν0, and the slope of theν vs. ν0 curve is vertical at
ν0 = νe.

To findν in the stable region outside the stopband, where
ν0 − q/2| > |∆ν|, one goes back to the derivation given
for ν inside the stopband, starting with Eq. (2-19). Eq. (2-
22) shows that for|ν0 − q/2| > |∆ν| the only acceptable
solution isg = 0, and Eq. (2-19) can be written as

(ν − ν0)(|ν − q| − ν0) = |∆ν|2 (3-2)

where we have putνs = ν.
Assuming thatν0 is just below the stopband edgeνe =

q/2 − |∆ν|, put ν0 = νe − ε andν = q/2 − δ into Eq.
(3-2), whereε andδ both approach zero asν0 approaches
the stopband edge. We find

δ = {ε(ε + 2|∆ν|)}1/2 (3-3)

The top edge of the stopband can be treated in the same
way and both results can be combined into the one result

|ν − q/2| = {|ν0 − νe|(|ν0 − νe| + 2|∆ν|)}1/2

νe = q/2± |∆ν| (3-4)

Very close to the stopband edge,|ν0 − νe| � |∆ν|, one
finds

|ν − q/2| = {2|∆ν||ν0 − νe|}1/2 (3-5)

Thus, asν0 approaches a stopband edge,ν approachesq/2,
anddν/dν0 become infinite like1/|ν0 − νe|1/2.

A result can be found for the beta function in the stable
region outside the stopband, but close to one of the edges
of the stopband. It can be shown that close to edge of a
stopband (see [7] for details)

[(β − β0)/β0]max = [2|∆ν|/|ν0 − νe|]1/2 (3-6)

νe is the edge of the stopband,νe = q/2 ± |∆ν|. |∆ν| is
the half-width of the stopband.ν0, β0 are the unperturbed
tune and beta function. Eq. (3-6) shows that whenν0 ap-
proaches the edge of the stopband,(β − β0)/β0 becomes
infinite like 1/|ν0 − νe|1/2.

4 COMMENTS ON THE RESULTS

Others have worked on this subject and there is some over-
lap between the contents of this paper and their work. P.A.
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Sturrock[2] obtained results for the stopband width and the
growth parameterg at the center of the stopband. E.D.
Courant and H. Snyder[3] obtained the result for the width
of the stopband. H. Bruck[4] showed that the solutions of
the equation of motion at the edge of the stopband are sta-
ble. He also states that the real part ofν is constant atq/2
across the stopband without giving a proof of this. A.A.
Kolomensky and A.N. Lebedev[5] obtained results for the
stopband width and the growth parameterg at the center of
the stopband. H. Wiedemann[6] obtained the result for the
width of the stopband using a method similar to that used
by Courant and Snyder.

The new results in this paper include the following.
The result given for the tuneν near the edge of the stop-
band,νe, |ν − q/2| = [2|∆ν||νe − ν0|]1/2. The result
given for the beta function near the edge of the stopband,
[(β−β0)/β0]max = [2|∆ν|/|νe−ν0|]1/2. The proof given
showing that the real part ofν is constant over the stop-
band atq/2 does not depend on perturbation theory, and
the result follows from the symplectic properties. The re-
sult that all the results found in this paper will also hold
for a small accelerator where the large accelerator approxi-
mation is not used. The result given for the solutions of the
equations of motion whenν0 is inside the stopband, and the
proof that the eigenfunctions and eigenvalues of the trans-
fer matrix are real inside the stopband. See [7] for more
details.
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