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Abstract The final results found below are valid for small accelera-

This paper studies the motion of a particle whose tune fors that require the use of the exact linearized equations.
e [7] for details.

inside and near a linear half-integer stopband. Results a gE 23 b it
found for the tune and beta functions in the stable region g. (2-3) can be written as

close to an edge of the stopband. It is shown that the eigen- 2
: . : d=n 5
values and the eigenfunctions of the transfer matrix are real w7l +v5 = —2u9b(0)n
inside the stopband. All the results found are also valid for 1
small accelerators where the large accelerator approxima- b(#) = iuoﬁQG /Bp (2-4)

tion is not used.
Because(0) is periodic a solution fon will have the form
1 INTRODUCTION
Inside a linear-half integer stopband the particle motion can 1 = exp(ivs0)h(0) (2-5)
be unstable and grow exponentially. The eigenvalues a%erehw) is periodic. It is assumed that the tungwill

eigenfunctions of the transfer matrix are shown to be re%lhange tos, because of the perturbing field. Thusan be
inside the stopband. In the stable region near an edge of tagsumed tz) have the form

stopband, the tune varies rapidly and the beta function be-

comes infinite as the unperturbed tune approaches the edge = A, exp(ivs) + Z A, exp(iv,0)

of the stopband. Results are found for the tune and beta s

function in the stable region near an edge of the stopband. = uv.+n (2-6)
It is found that the beta function becomes infinite inversely

as the square root of the distance of the unperturbed tuggerey, is some integer but # 0. For a zero perturbing
from the edge of the stopband. field the solution fom is ) = A exp(ivof). Thus for small

perturbing fields it can be assumed that
2 RESULTS WHEN THE TUNE IS IN THE

STOPBAND Vs ~ 1
It will be assumed that in the absence of the perturbing A, <« Ajforr#s (2-7)
fields, the tune of the particle ig and that the motion is i i .
stable wheny, is close tag/2, whereg is an integer. Putting Eq. (2-6) into Eq. (2-4), one obtains a set of equa-

It is assumed that a perturbing field is present which ions for theA,.

iven on the median plane b
] Pane >y (V2 — 1) A,

2ug Z b7 Az

AB, = —G(s)x (2-1)
1 2
G(s) is periodic ins and contains the field harmonics that byr = o df b(0) exp(—iv, 0 + ived)
can excite the stopband aroungd= ¢/2. TJo
Introducingn defined by v = Vstn (2-8)
n= x/gl/{ (2-2) Itis assumed that, is neany = ¢/2, ¢ being an integer.

The stopband is defined as the range/gfor which the
where/ is the beta function of the unperturbed field, theune, v,, in the presence of the perturbation given by Eq.

equation of motion can be written as (2-2) has a non-zero imaginary part. One can writas
d? = ; -
d_6‘727 + ygn =f Vs =Vspr — 19 (2 9)
f = ¥p*2*AB,/Bp (2-3)  Itwill be shown that inside the stopband, wherg 0, then
212
= - Gn/B
f v 8°Gn/Bp Vsr = q/2 (2-10)

Bp = pc/e, df = ds/vof

*Work performed under the auspices of the U.S. Department of Enl NiS may be shown as follows. Lﬂtb_e the phase shift for
ergy. a period, ang. = 27 where the period has been assumed
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to be one turn o2 in 6. LetT be the transfer matrix for 3 TUNE NEAR THE EDGE OF A STOPBAND

one period. Then one has . . . .
P In this section, a result will be found for the tune in the

cosp = E(Tu + Tha), (2-11) Stable region outside the stopband but close to one of the
2 edges of the stopband. It will be shown that close to the
and one sees thabs . is real even inside the stopbandedge of a stopband,
since theT;; are real. One also has 1o
cosp = cos2m(vsp — ig) = cos(2mvsR) cosh(2mg) v —a/2| = {21Av] [ro — ve[} (3-1)
+ isin(2nvsR) sin(2mg) (2-12) v is the tune in the presence of the gradient perturbation,
v. is the edge of the stopband, = ¢/2 + |Av|. |Av|is

In order forcos i to be real, one has to have eithee 0 :
s h e the half-width of the stopband. Eq. (3-1) shows that when

or, if g # 0, 2rvsg = nm, wheren is some integer. Thus,

inside the stopband whege-- 0, vy is close to an edge of the stopbamd, v varies rapidly
with vy, and the slope of the vs. vy curve is vertical at
Vs = n/2 (2-13) vy = V.
In order to have continuity when the perturbation goes to 10 findv inthe stable region outside the stopband, where
zero, one has = ¢ and vy — q/2] > |Av|, one goes back to the derivation given
for v inside the stopband, starting with Eqg. (2-19). Eq. (2-
Vsk = q/2 (2-14)  22) shows that fotry — /2| > |Av| the only acceptable

Now let us return to the problem of computing thesolutionisg = 0, and Eq. (2-19) can be written as
growth factor,g, using perturbation theory. One sees from B 5
Eq. (2-8) that whem, ~ ¢/2, then one of thed, becomes (v =v0)(|v = al = vo) = |Av] (3-2)
comparable tad,, and this is thed,. for whichv,. = v5—¢,
v, ~ —q/2. Thus in the above iterative procedure for find
ing n, one will assume for the initial guess for

where we have put, = v.
" Assuming that is just below the stopband edge =
q/2 — |Av|, putyy = v, — e andv = ¢/2 — ¢ into Eq.

n = Asexp(ivsd) + Asexp(ivs) (3-2), wheree andd both approach zero ag approaches
s = vs—gq (2-15) the stopband edge. We find
From Eq. (2-8) one finds 5 = {e(e +2|Av|)}/? (3-3)

2_ .2 _ A= (2-
(v = v5)Ar = 2vobrs As + 200bys Az (2-16) The top edge of the stopband can be treated in the same

Vp=Vs+n OF Vp=Vs+n=Vs—q+n way and both results can be combined into the one result
Forr = s andr = 5 one obtains 2 equations far, and A3 12
2 o lv—q/2] = {lvo—vel(lvo —vel +2[Av|)}
(vy —15)As = 2vpbss Az
ve = q/2+]|Ay| (3-4)
(12 —13)As = 2wpbss Ay (2-17)
Vs =Us—q Very close to the stopband eddey — v.| < |Av|, one
- L finds
In Eq. (2—17), it has been assu_med, for S|mpI|_C|.ty sake, that v — q/2| = {2|Av]|jvo — Ve|}1/2 (3-5)
bss = 0. This can be accomplished by redefiningto be
vo + bo. Thus, as/ approaches a stopband edgepproacheg,/2,

In order for Egs. (2-17) to have a solution, one must havenddy/dv, become infinite likel /|vg — ve|'/2.
0 o, 9 9 5 5 A result can be found for the beta function in the stable
(vs —19)(vs —vy) = 4uglbgs]

region outside the stopband, but close to one of the edges
Vs = Vs—( (2-18)  of the stopband. It can be shown that close to edge of a

Eq. (2-18) determines,. If one writesv, = v, — ig, one  Stopband (see [7] for details)
finds
(B = Bo)/Bolmax = [2|Av|/|vo — ve|]'/? (3-6)

[(vsr —i9)® = v5] [(vsr — a —ig)*] = 45| Av|? , .
(2-19) V. is the edge of the stopband, = ¢/2 & [Av|. [Av|is

whereAv = bz the half-width of the stopbandy, 5, are the unperturbed
1L tune and beta function. Eq. (3-6) shows that whgmp-
Ay = — / ds B exp(—iqh)G/Bp (2-20) proaches the edge of the stopbafiél— 5y)/5 becomes
Am Jo infinite like 1/|vy — ve|'/2.
Vsk = q/2 (2-21)
4 COMMENTS ON THE RESULTS
(@/2—w)+g> = |AvP (2-22) o ,
) 0y 1/2 Others have worked on this subject and there is some over-
g = ={Av] - (¢/2-w)*} lap between the contents of this paper and their work. P.A.
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Sturrock[2] obtained results for the stopband width and the
growth parametey at the center of the stopband. E.D.
Courant and H. Snyder[3] obtained the result for the width
of the stopband. H. Bruck[4] showed that the solutions of
the equation of motion at the edge of the stopband are sta-
ble. He also states that the real pari-df constant ag/2
across the stopband without giving a proof of this. A.A.
Kolomensky and A.N. Lebedev[5] obtained results for the
stopband width and the growth parametet the center of
the stopband. H. Wiedemann[6] obtained the result for the
width of the stopband using a method similar to that used
by Courant and Snyder.

The new results in this paper include the following.
The result given for the tune near the edge of the stop-
band, v, [v — ¢/2| = [2|Av||ve — 1o|]'/2. The result
given for the beta function near the edge of the stopband,
[(ﬁ _BO)/ﬁO]Inax = [2|AV|/|V6 - V0|]1/2' The proof given
showing that the real part of is constant over the stop-
band atg/2 does not depend on perturbation theory, and
the result follows from the symplectic properties. The re-
sult that all the results found in this paper will also hold
for a small accelerator where the large accelerator approxi-
mation is not used. The result given for the solutions of the
equations of motion whem, is inside the stopband, and the
proof that the eigenfunctions and eigenvalues of the trans-
fer matrix are real inside the stopband. See [7] for more
details.
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