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Abstract

A method for measurement of ultrashort beam current pro-
file Ib(t) is proposed that is based on detecting fluctua-
tions of the spectral intensityP (ω) of single bunch inco-
herent radiation. We show that the variance of the Fourier
transform of the spectrum is proportional to the convolu-
tion function of the beam current. After the convolution
function is found, using phase retrieval technique one can
restore the shape of the pulse in many practical cases.

1 INTRODUCTION

Measurements of the longitudinal beam profile of a rel-
ativistic electron or positron beam is an important diag-
nostic tool in modern accelerators that is used both for
routine monitoring and dedicated studies of beam physics.
For bunch lengths in the range of picoseconds, such mea-
surements can be performed by means of a streak camera.
Shorter bunches usually require some kind of special tech-
niques. Several methods have been proposed which have
a potential of measuring ultrashort bunches. In Ref. [1], a
coherent transition radiation emitted at wavelengths longer
than or equal to the bunch length was used for analysis of
subpicosecond electron pulses. In Ref. [2], Compton scat-
tering of photons on interferometric pattern generated by
two laser beams was proposed as a beam-profile monitor.

Recently, we have proposed a novel technique for mea-
suring short bunches [3]. The method is based on the obser-
vation of the interferometric fringes produced byincoher-
ent radiationof single bunch in a two beam interferometer.
It was shown that fluctuations of the interferometric signal
of a single bunch carry the information about the convo-
lution function of the bunch current and allow to ascertain
the bunch profile from analysis of the statistical properties
of the fluctuations. In the present paper, we describe a new
modification of the original idea that significantly simpli-
fies the experimental apparatus and opens a possibility for
designing a low-cost, easy-to-operate bunch length moni-
tor.

2 SETUP AND MEASUREMENT

The schematic of the experimental setup of the measure-
ment is shown in Fig. 1. Synchrotron light emitted by a
bunch in a bend magnet passes through the spectrometer
(S) and is measured by the CCD detector (D). The CCD
selects a spectral range∆ω around the frequencyω0 in the
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Figure 1: Schematic of the experimental setup. Syn-
chrotron radiation of the beam (B) passes through the spec-
trometer (S) and is detected by the array of CCD (D).

interval(ω0−∆ω/2, ω0+∆ω/2). Assuming that CCD has
Nch channels, the frequency difference between the adja-
cent channels is∆ω/Nch. In order to be able to measure a
bunch of lengthσb , the spectral resolution of the spectrom-
eter should be better thanτ−1

b , whereτb = σb/c. Also, the
spectral width∆ω must be much larger than the inverse
bunch lengthτb, ∆ω � τ−1

b . Note that for the optimal
performance the number of channels should be such that
∆ω/Nch is smaller the spectrometer resolution.

Let us denote the the detector signal in channelm, (1 <
m < Nch) asPm. This signal is Fourier transformed,

Γk =
Nch∑
m=1

Pme2πimk, (1)

and the quantityΓk is stored. In case of a high repetition
rate, one will have to use a fast shutter to prevent the expo-
sure of the CCD by the light of the next bunch before the
readout is completed. After accumulation ofNp number of
pulses, large enough for statistical analysis, the following
quantity is computed

dk =
Np∑
α=1

∣∣∣∣∣∣Γ
(α)
k − 1

Np

Np∑
β=1

Γ(β)
k

∣∣∣∣∣∣
2

, (2)

where the superscriptsα andβ indicate the pulse number.
As we will show in the next section, the quantitiesdk give
the convolution function of the particle density in the bunch
(averaged overNp bunches), and, with some additional as-
sumptions, allow to find the bunch profile.

3 THEORY

We assume that the emitted radiation can be described in
terms of the classical field, which is true if the number of
photons in the coherence volume is much greater than one.
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Let E(t) be the electric field of the radiation of a single
bunch. The spectrometer decomposes this field into Fourier
harmonics and the detector measures the absolute value of
the spectral intensityP (ω),

P (ω) ∝
∣∣∣∣∣∣

∞∫
−∞

E (t) eiωtdt

∣∣∣∣∣∣
2

. (3)

Due to the incoherent nature of the radiation, the result of
each measurement fluctuates from channel to channel and
from bunch to bunch. An example of a simulation of one
measurement of the spectrum is shown in Fig. 2, (see de-
tails below).
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Figure 2: Simulation of a spectrum of a single bunch (in
arbitrary units). The total number of channelsNch is 128.

The quantity that carries information about the bunch
profile is the Fourier transform of the measured spectrum
which we denote byΓ(τ),

Γ (τ) =

∞∫
−∞

P (ω) e−iωτdω. (4)

In reality, this Fourier transform will be performed in dis-
creet form as given by Eq. (1) after digitizing the signal
from the CCD. SinceP (ω) is a fluctuating function of the
frequency, the functionΓ(τ) will also exhibit random fluc-
tuations.

To relate the statistics of the fluctuations ofΓ(τ) to the
pulse parameters, we represent the electric field of the pulse
in the detectorE (t) as a product of two functions,

E (t) = A (t) e (t) , (5)

wheree (t) is a stationary complex-valued stochastic pro-
cess [4], andA (t) denotes a (deterministic) complex am-
plitude of the pulse,A (t) =

√
I (t)e−iϕ(t), whereI (t) is

the instantaneous radiation intensity andϕ (t) is the phase
of the pulse envelope. The characteristic time of the varia-
tion of both functionsA (t) andϕ (t) is of the order of the
pulse durationτb. Related to the fluctuational part of the
field e (t) is a correlation functionK (τ),

K (τ) = 〈e (t) e∗ (t − τ)〉 , (6)

where the angular brackets denote ensemble average. The
function K(τ) oscillates with the frequencyω0 and falls
off on the scale of the coherence timeτcoh ≈ π/∆ω � τb

associated with the spectral width∆ω. The functionΓ(τ)
is then equal,

Γ (τ) =

∞∫
−∞

A (t)A∗ (t − τ) e (t) e∗ (t − τ) dt. (7)

Using Eq. (6), we can easily find the average value ofΓ (τ),

〈Γ (τ)〉 = K (τ)

∞∫
−∞

A (t)A∗ (t − τ) dt

≈ K (τ)

∞∫
−∞

I (t) dt. (8)

The quantity〈Γ (t)〉 is proportional to the total charge of
the bunch and does not contain information about the bunch
profile.

Now, we want to show that the fluctuations ofΓ (τ)
around its average value indeed carry the information about
I (t). To this end, we calculate the absolute value of the
variancedΓ (τ) of the fluctuations ofΓ (t). FordΓ (τ) we
have

dΓ (τ) =
〈
|Γ (τ)|2

〉
− |〈Γ (τ)〉|2

=

∞∫
−∞

∞∫
−∞

dtdt′A (t)A∗ (t − τ)A∗ (t′)A (t′ − τ)

× 〈e (t) e∗ (t − τ) e∗ (t′) e (t′ − τ)〉 − |K (τ)|2

×
∞∫

−∞

∞∫
−∞

dtdt′A (t)A∗ (t − τ)A∗ (t′)A (t′ − τ).

For a normal stochastic process, the fourth order correlators
are reduced to the sum of the products of the second order
correlators, yielding

〈e (t) e∗ (t − τ) e∗ (t′) e (t′ − τ)〉
= 〈e (t) e∗ (t − τ)〉 〈e∗ (t′) e (t′ − τ)〉
+ 〈e (t) e∗ (t′)〉 〈e∗ (t − τ) e (t′ − τ)〉

= |K (τ)|2 + |K (t − t′)|2 . (9)

The first term on the right hand side of Eq. (9) appears in
the theory of Hunbury Brown – Twiss interferometry [6],
however, it does not contain information about the pulse
shape. It will be canceled by the last term on the right hand
side of Eq. (9). From Eqs. (9) and (9) on can find

dΓ (τ) =

∞∫
−∞

|K (ξ)|2 dξ ×
∞∫

−∞
dtI (t) I (t − τ). (10)

Note thatdΓ (τ) is proportional to the convolution of the
intensity I (t). For the discrete Fourier transformation,
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dk given by Eq. (2) represent the functiondΓ (τ), dk =
dΓ (k/δω).

Strictly speaking, knowledge of the convolution function
does not allow a unique restoration ofI(t). However, as
was shown in Ref. [7], using a phase retrieval technique
allows to restore the beam profile in many practical cases.

The above consideration assumed that the quantum fluc-
tuations of the number of photons in the detector are neg-
ligible. We can easily derive the condition for the beam
intensity when this is requirement is met. The number of
synchrotron photons,nph that reach the detector (they are
radiated from(1/γ)(ωc/ω0)1/3 radians of the beam trajec-
tory, whereωc is the critical frequency for the synchrotron
radiation) is equal [5]

〈nph〉 ≈ αNeδω/ω0, (11)

whereα is the fine structure constant,Ne is the number
of electrons in the bunch, andδω is the spectral width per
one channel,δω = ∆ω/Nch. The condition〈nph〉 � 1
gives a limitation onNe from below. Note, that in this
estimate we assumed that the beam radiation is coherent
in the transverse direction, otherwise an additional factor
would appear in Eq. (11).

If condition 〈nph〉 � 1 is not met, quantum fluctu-
ations superimpose on the random fluctuations described
above. However, the information about the pulse shape is
still present in the measured signal, although a larger statis-
tics would be needed to suppress the additional noise intro-
duced by the quantum fluctuations.

4 COMPUTER SIMULATIONS

We have performed computer simulation of the measure-
ment of fluctuating spectra. The code simulates incoher-
ent radiation of a large numberNe of independent sources
(electrons) that are distributed according Gaussian function
with the rms valueτb. The average intensity of incoherent
radiation is given byI (t) = I0 exp

(−t2
/
2τ2

p

)
.
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Figure 3: Simulation of a measurement averaged over 100
bunches. Dots represent simulated values ofdk, and the
curve is a theoretical convolution function for the beam
density.

The parameters for this particular example are:τb =
17ps (rms bunch lengthσb = 0.5 cm), the wavelength of

the central frequencyλ = 2πc/ω0 = 6300Å. We assume
a standard spectrometer with dispersion of about 10Å/mm
and a CCD with 128 channels with a pixel size of 10µm.
A spectrum of a single bunch is shown in Fig. 2, and the
result of the simulation of the measurement ofdΓ(τ) using
averaging over 100 pulses is shown in Fig. 3 with a solid
line showing theoretical prediction for a Gaussian beam,
d
(th)
Γ (τ) = const exp

(−t2
/
4τ2

b

)
. A Gaussian fit to the

measurement gives fordΓ(τ) the rms width of 1.38 (in-
stead of the theoretical value of

√
2) which translates into

the measurement error of about 2%.
Note that Eq. (11) gives for the parameters cited above

the following limitation for the number of particles in the
bunch,Ne � 5 × 107.

5 CONCLUSION

In summary, a technique is proposed, capable of measur-
ing short pulses of incoherent radiation. It is based on the
observation and statistical analysis of the bunch spectrum
fluctuations. Although we assumed synchrotron radiation
above, the nature of the radiation is not important, and, for
example, transition radiation can be used as well. Typi-
cally, averaging over fluctuations requires accumulation of
many (on the order of102) pulses for a singe measurement,
however, a modification of the method is possible in which
one can perform averaging over different spectral intervals
in a single pulse.

An important feature of the method is that it can be used
for bunches with the lengths ranging from a centimeter to
tens of microns.

Experimental verification of the method is under way at
the synchrotron source ALS at the Lawrence Berkeley Lab-
oratory.
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