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Abstract

We have evaluated the usefulness and limitation of a non-
intrusive beam radius diagnostic which is based on the
measurement of the magnetic moment of a high-current
electron beam in an axisymmetric focusing magnetic
field, and relates the beam root-mean-square (RMS) radius
to the change in magnetic flux through a diamagnetic
loop encircling the beam.  An analytic formula that gives
the RMS radius of the electron beam at a given axial
position and a given time is derived and compared with
results from a 2-D particle-in-cell code.  Our study has
established criteria for its validity and optimal
applications.

1. INTRODUCTION

In radiography, the x-rays are generated by an electron
beam impacting a  target of optimum thickness.  The
spot size of the electron beam before impact is an
important factor in the resolution of radiography.  It is
therefore highly desirable to use a non-intrusive technique
to measure the radius of the electron beam during its
transport to obtain valuable information about the beam
size on target.

2. CRITERIA OF APPLICABILITY

For the electron beam in the Integrated Test Stand (ITS) at
Los Alamos National Laboratory, we have evaluated the
usefulness and accuracy of the non-intrusive beam radius
diagnostic proposed by W.E. Nexsen1.  This diagnostic is
based on the measurement of the magnetic moment of a
high current electron beam in an axisymmetric focusing
magnetic field, and relates the beam root-mean-square
(RMS) radius to the change in magnetic flux through a
diamagnetic loop that encircles the beam.  The formula
that gives the RMS radius R at a given axial position z
and a given time t is1
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where ∆Φ Φ Φ≡ −( ) ( )t 0 , Φ( )t  is the axial magnetic

flux through the loop at time t Bz, ( )0  is the external

axial magnetic field at the z position of the loop,Iz  is the

axial particle current at z and t, and C = 4mcβγ/µοe is a
constant in MKS units.  The RMS radius R is defined by
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Using the particle-in-cell (PIC) code MERLIN, we can
compare the RMS radius calculated from Eq. 1 with a
code-calculated definition of R given by Eq. 2 to
quantitatively evaluate the accuracy of Nexsen's diagnostic
for the ITS beam.  Some cautions are warranted in using
this diagnostic.  Nexsen's analysis is applicable to a
steady-state electron beam born in a field-free region and
injected into an axisymmetric magnetic field in a region
with no boundaries. In applying this diagnostic to the ITS
beam, we seek to use Nexsen's formula for a pinched
beam with a finite risetime propagating in a drift tube.
This diagnostic should be applied only after the beam
current is fully risen to its peak (steady state) value and it
cannot be used to measure the RMS radius of a beam
immersed in a constant external magnetic field.
Equation 1 applies to unbounded systems, however, in the
realistic (bounded) problem, the magnetic flux diffusion
time is nonzero across boundary materials.  On the time
scales set by the ITS beam, flux displaced from the initial
configuration (external magnetic field only), due to the
presence of the propagating beam, cannot penetrate the
drift tube wall.  That is, for a beam propagating inside a
drift tube and in an external solenoidal field, the total flux
within the drift tube is conserved. For a diamagnetic
beam, the total magnetic field inside the beam decreases
below the value of the external field, and this is
compensated by an increase in the field in the vacuum
region between the beam and the drift tube wall.  The
complex dynamics of the beam propagating in the
external and self fields may also produce regions in space
where the field inside the beam exceeds the external field
there, so that the beam is non-diamagnetic.  In either case,
the total flux is conserved within the drift tube.  The
presence of the flux-conserving wall modifies the flux
change ∆Φ  in Eq. 1, which is applicable to an
unbounded system.  To use Nexsen's diagnostic in the
case of a beam propagating inside a drift tube, we must
adjust the code-calculated flux change for a bounded
system in order to use Eq. 1.  By inserting a flux-
adjustment-factor (FAF) that depends on the loop and drift
tube radii, we increase the magnetic flux ∆Φ change to

correspond to that which is appropriate to an
unbounded system.  This factor can be approximately
derived 2 to be
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where A(loop) is the area of the diamagnetic loop and
A(drift) is the area of the drift tube. This geometric flux-
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adjustment-factor (Eq. 3) must be applied to Eq. 1 in order
to use the diagnostic for a beam propagating in a drift
tube. The flux change ∆Φ  in Eq. 1 varies with the axial
location of the loop in the external magnetic field.  When
the loop is located in a region of small external field (say,
near the ends of the solenoidal coils), the value of ∆Φ  is
a small number (being the difference of two nearly equal
numbers).  The code-calculated flux is noisy, and the
noise reduction procedure used to calculate a value for
Φ( )t  is somewhat arbitrary and may therefore

produce non-unique values for ∆Φ .  Such values of
∆Φ  could therefore be uncertain by 25% or more, and
this fact will introduce uncertainties in the RMS radius
calculated from Eq. 1.  Locating the diamagnetic loop in
a region of peak external magnetic field ensures
larger flux and flux change ∆Φ , often larger by an order
of magnitude or more.  These larger values reduce the
uncertainty in the calculated RMS radius.  Therefore, the
diamagnetic loop should be placed in a region of
maximum external magnetic field. The flux change ∆Φ
in Eq. 1 also varies with loop radius, being largest when
the loop radius approaches the beam radius.  Because of
the arbitrariness and uncertainty introduced in calculating
∆Φ  as the small difference of two nearly equal numbers,
better accuracy for R is ensured for larger values of ∆Φ .
In the limit that the loop radius approaches the drift tube
radius, the flux change is zero because the total flux
enclosed by such a loop is conserved.  Furthermore, the
FAF is a maximum (namely, infinity) as A(loop)
approaches A(drift), but is a minimum as A(loop)
approaches its minimum allowed value of A(beam),
where A(beam) is the cross-sectional area of the beam at
the axial location of the loop.  The nature of the FAF is
that of a back-of-the-envelope calculation, in that time and
space variations of the fields and the particle positions are
not taken into account.  Hence, situations where the FAF
is a minimum (i.e., the adjustment necessary to apply
code-calculated quantities to Nexsen's formula for an
unbounded system is a minimum) are more appropriate.
For a given diamagnetic loop, the difference between the
loop radius and the beam radius is largest at the pinch, and
the corresponding ∆Φ  will be small and highly
uncertain.  In addition, the strongly two-dimensional
behavior of the pinched electron beam casts doubt on the
validity of Eq. 1 in this region. Therefore, the diamagnetic
loop radius should be close to (but greater than) the beam
radius.  The diagnostic is not suited for measuring the
RMS radius at or near the pinch.
The simulations described in the following section help to
quantify the term "close" for the ITS beam.  Accuracy to
within a few percent can be achieved when the loop radius
is within a couple of centimeters of (and larger than) the
beam radius. When the loop radius is more than a couple
of centimeters larger than the beam radius, such as when
the loop is located close to the drift tube wall, then errors
may be greater than 10%.  

In summary, Nexsen's analysis is based on a steady state,
unbounded system, and the formula in Eq. 1 must be
applied to a bounded, flux-conserving experiment (and
simulation).  To accomplish this with reasonable
confidence in the diagnostic, the loop should be placed far
from the pinch, in a region of maximum external
magnetic field, and should use a diamagnetic loop that is
within a couple of centimeters of the beam radius (and
encircles the entire beam).  Because the location of the
pinch is a priori unknown and depends on the initial beam
radius and on the initial angle of the beam envelope, the
simulations can play a crucial role in evaluating the
accuracy of the diagnostic data.  Moreover, since the
experimentalist is limited to locating the diagnostic loop
close to the drift tube wall, in order to ensure that the
loop surrounds the entire beam, the code can serve as an
essential benchmarking tool to correlate the RMS radius
determined from the (experimental) large-radius loop with
that determined from simulation loops whose radii are
closer to the beam radius.

3. MERLIN SIMULATIONS

The ITS beam was modeled using the 2-1/2-dimensional
PIC code MERLIN. The typical geometry used in the
simulations, assumed axisymmetric, is depicted in the
Fig. 1.

 
Figure 1.  Configuration and phase space plots of a

typical simulation at 16.7ns.

The drift tube radius is 7.5 cm, and the axial extent is 160
cm.  A solenoid of length 13.125 inches is energized to
produce a peak axial magnetic field of approximately 1
kG.  This field was generated with the code BFIELD,
which links to MERLIN, by specifying 35 current loops
approximately uniformly distributed between z = 45.33
cm and z = 78.67 cm. positions.  The magnetic field
varies slightly with r in the vicinity of the maximum
field, which is the location of diagnostic probes in both
simulation and experiment.  This small variation violates
the assumption in the previous analysis and may
introduce slight errors.
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The electron beam has uniform initial density for r ≤ rb,
the beam radius.  The peak current is about 3 kA, with a
3-ns risetime and a flat top:  the functional dependence
used in MERLIN is I(t) =Io [1-exp(-0.5(t/τ)2] where τ is
the 3-ns risetime.  The electrons' initial kinetic energy is
5.31 Mev, which corresponds to a γ of 11.39.   In ITS, a
metal annular sleeve of thickness about 1 cm fits tightly
into the drift tube and holds the diamagnetic loop, which
is embedded in plastic.  This sleeve is simulated as a 1-
cm-thick conductor that extends from the position of
maximum external magnetic field (z = 61.8 cm) to the
downstream boundary  at  z = 160 cm as shown in Fig. 1.
The numerical probes in the simulations to calculate the
RMS radius are located at the z-position of maximum
external field and at two different radial positions, 4.0 and
6.0 cm.  Two radial locations were chosen, because the
larger radius corresponds to the experiment and because
the smaller-radius loop will allow us to quantify the
improved accuracy of the calculated RMS radius resulting
from the loop radius  being closer to the beam radius.
We set up our simulations according to experimental
observation that the range of initial beam radius is 2.5 -
4.0 cm, and the range of initial angle of the beam
envelope (dr/dz) is ± 60 milliradians.  In addition, we
imposed an arbitrary initial Gaussian scatter of 1
milliradian on the beam for all cases.  
Application of Eq. 1 requires the difference in magnetic
flux at two times, t = 0 and some t > 0 at which the
RMS radius of the beam is being calculated.  Even in the
region of maximum external magnetic field, the flux
difference is a small number, typically for ITS parameters
only a fraction of a percent of the absolute value of the
flux.  Although the flux at t = 0 can be determined exactly
from the simulations, the flux at t > 0 is more uncertain
and must be carefully processed to minimize numerical
flux noise resulting from the simulations. Figure 2 is an
example of the magnetic flux in one of the simulations.
Table 1 summarizes the results of nine simulations with
various initial beam radii  and  angles of the injected beam
envelope.  It compares the RMS radius using  Eq. (1) and
the definition Eq. (2) for the nine simulations.  The
probes were placed at the axial position corresponding to
maximum external magnetic field (z = 61.8 cm) and radial
positions r = 4.0 cm (smaller diamagnetic loop to
demonstrate increased accuracy) and r = 6.0 cm (larger
diamagnetic loop typically used in experiments).  The
RMS radius is calculated at 16.2 ns, which is in the
steady-state regime.
Except in cases where the particles' large radial positions
render the diagnostic meaningless (a and b), we calculate
three values of the RMS radius for each simulation:  the
definition and the Nexsen values at r = 4.0 and 6.0 cm.
Error bars for the Nexsen RMS radii in Table 1 are
certainly nonzero, but cannot be accurately quantified
because the errors associated with the calculation of the
flux change can only be roughly estimated. Better

agreement is obtained when the loop radius is closer to
the beam radius.

Figure 2.  Example of magnetic flux, as a function of
time, through a 4.0-cm loop located at the axial position
of peak external magnetic field.

Table 1
r0(cm)/θ0(mrad) RMS Radius (cm)

Definition 4.0
cm
loop

6.0
cm
loop

3.5 1.46 1.46 1.46
3.5/-60 1.18 1.21 1.35

3.5/63 4.00 a 3.12
4.0/0 1.80 1.79 1.68
2.5/0 0.79 0.90 1.19
4.0/-69 1.21 1.22 1.34
2.5/-42 1.11 1.18 1.30
4.0/71 4.66 b b
2.5/45 2.58 2.52 2.16

4. CONCLUSIONS

In our study, we find that the accuracy of the RMS radius
probe increases when the diamagnetic loop is far from the
metal wall (close to the beam radius).  A convenient rule-
of-thumb, based on this limited set of data, is that placing
the diamagnetic loop within a couple of centimeters of the
beam radius is sufficient to ensure reasonable accuracy.

5. ACKNOWLEDGMENTS

We wish to acknowledge Dave Moir and Evan Rose for
many useful discussions throughout this work.

 6. REFERENCES

[1] W. W. Nexen, “A Non-Interfering Beam Radius
Diagnostic,” draft paper dated August 19, 1991.

[2] W. E. Nexsen, “Beam Brightness from Beam
Diamagnetism,” unpublished LLNL research memo
87-27, August 7, 1987.  

2176


