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Abstract 2.1 2D planar circuit model

The numerical determination of the electromagnetic fielimple electromagnetic planar circuits considered here are
eigenmodes of a microwave cavity containing regions dhose for which an exact two-dimensional representation
high-loss dielectric material is of technological importancéan be found in terms of a single field component. The
to many areas, including high power microwave gener&lass includes many structures of practical use, for exam-
tion, particle accelerator design and microwave sinteringle rectangular waveguides with H-plane bends and junc-
of ceramic materials. This pr0b|em has proved prob|enﬂ0n5, which may contain columnar structures of metal or
atic to numerical techniques [1], causing poor convergenébelectric. Such circuits have no structure in the third di-
and long computation times when highly lossy material§'€nsion other than parallel bounding planes of metal, and
are present. The Jacobi-Davidson algorithm [2] applied tBossess only modes having an electric field perpendicular
this problem is shown to be capable of extracting a set @ the plane.

eigenmodes, even for the cases of degenerate eigenvalueor such a circuit having no structure in thelirection,

and low ohmic-Q cavity modes. Details of the theory andhe following eigenvalue problem may be derived
numerical solution using 2-dimensional (planar circuit) and 9 9 > B

3-dimensional electromagnetic operators will be presented. {VI+wieri)uo} By(r) =0

The cavity frequenciesy, and mode structuresy, (r, ),
1 INTRODUCTION may be obtained as solutions of this eigensystem. Metallic
wall boundary conditions in the—z plane may be included
Many scientific and engineering problems require the dén the numerical implementation of the differential opera-
termination of a selected number of the eigenvalues, andr. The transverse Laplacian operator is self-adjoint, and
possibly eigenvectors, of a large system of linear equationherefore if the permittivity and permeability functions are
Typical examples arise in electromagnetics when a field igal then the eigensystem is symmetric, and the spectrum
represented by discrete values and the determining equail contain only real eigenvalues.
tion is discretised in some manner, for example by finite
difference, finite element or finite integration methods. Th@.2 3D complex cavity model

ease with which such problems may be solved depends 3. dimensional electromagnetic operator was derived us-
the size of the problem, but also is strongly dependent upo

o ] ing the finite integration method [3]. The eigenvalue form
the distribution of the eigenvalues and whether they are re ririved from Maxwell's equations is (in normalised units)

or complex. ) i i the vector equation [1]
Methods for eigenvalue and eigenvector computation for
large, linear systems of equations by iterative methods fre- curl p~teurl E — grad div €E = w?eE

guently require that the matrices be self-adjoint (Hermi-

tian). Such methods can often be applied with some sughere the discretised componentd®form the eigenvec-
cess for systems having eigenvalues with relatively smalr, andw? is the eigenvalue of the numerical implemen-
imaginary parts, however the theoretical basis for convetation of the operator. The divergence term is included to
gence is not well defined and poor convergence often réémove the multiply degeneragtaticsolutions with eigen-
sults. Many basic properties of the solutions of self-adjointalue zero which result from the freedom of E to include
eigensystems do not hold in the general case, and ma@&omponent corresponding to the gradient of an arbitrary

rigourous techniques must be used if convergence is to lséalar field.
ensured. The finite integration method defines field components

using the Yee cell arrangement, shown in figure 1, for
which the differential operators take a particularly simple
form, and takes account of the permittivity and permeabil-
Ey of each

cell.

2 EIGENVALUE FORMULATION

Two electromagnetic eigenproblems will be considere
here. Firstly, a 2-dimensional planar circuit model will be
used to provide realistic test examples of moderate size, fgr
which solutions may be readily visualised. Secondly, a fu 3 LOSSY MATERIALS

3-dimensional model is described and examples given ®egions of complex permittivity, representing Ohmic loss
show the effectiveness of the Jacobi-Davidson method am these materials, make the discretised eigensystems non-
larger problems. Hermitian, and therefore critically change the characteris-
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well described by Sleijpeet al. [4]. At each step, the sub-

space is updated by obtaining an estimate of the correction
A > . to each approximate eigenvector using Jacobi’s orthogo-
nal component correction (JOCC) method derived from the
residual error. For systems which are not self-adjoint, the
left and right eigenvectors corresponding to an eigenvalue

\
‘L
B

el » will in the general case not be parallel, and the subspaces
: .,,:...__“ _______ T . — % spanned by the eigenvectors corresponding to a given set of
A ... Iy '/Y eigenvalues will be different. Therefore separate subspaces
- e ”H should be maintained and updated for the solution of non-

E, > * Hermitian systems. This has been suggested in connection

E, with the original Davidson method for use with non-normal

matrices [5].
Figure 1: Yee cell structure of 3D discretisation The modified Jacobi-Davidson method for non-

Hermitian systems operates as follows. The large
tics of the solution. The solution for non-Hermitian sys-eigensystem is projected at each iteration into the current
tems may often be obtained using methods derived fatored left and right subspaces, and the small projected
Hermitian systems, provided that the system deviates onfyroblem solved exactly to obtain estimates of the solution
slightly from a Hermitian problem. Here, this correspondshrough a Ritz procedure. Separate subspace corrections
to small values of the loss tangent of the dielectric mateare obtained using JOCC steps on the left and right
rials, and solutions for such cases frequently converge usigenvector residuals, and incorporated in the subspaces.
ing Hermitian methods. If highly lossy materials are to béBoth corrections may be obtained from a single procedure,
modelled successfully, a more rigourous approach is neand little computational overhead is involved in obtaining
essary. the second correction as a by-product of calculating the

first.

3 NON-HERMITIAN EIGENSYSTEMS

A generalised linear matrix eigensystem can be written in > EXAMPLE GEOMETRIES

the form To test the effectiveness of the method in solving for eigen-

Ax = ABx (1) frequencies and field eigenmodes of cavities, results from
The column vectox satisfying (1) is an eigenvector of the @ Number of test examples will be given. The ability of an
system{ A, B}, with corresponding eigenvalug, For ma- algorithm to converge can depend on the characteristics of
trices which are not Hermitian, it is possible to formulate 4he structure of the cavity. For example,

second, related eigenproblem as follows. e symmetry of the structure can lead to degeneracy of

FA = XyB or Ay = By\ 2 eigenvalues .
Y Y Y Y ) e materials with high loss-tangent can give rise to non-
wherey is a row vector. The vectoy satisfying (2) is real eigenvalues in the spectrum

a |eft-eigenvector Of the Syste[{]A,B}, W|th Correspond_ ° the number Of UnknOWnS in the SOIUtion may inﬂuence
ing eigenvalue\. For a given generalised eigensystem  the convergence
described by{ A,B}, pairs of left- and right-eigenvectors

have equal eigenvalues, though the eigenvectors are rgﬁe test examples are intended to include sufficient com-

exity with regard to these criteria in order to ascertain the

necessarily equal. ffectiveness of the eigenvalue solver for electromagnetic
The left and right eigenvectors possess a mutual Og_roblems g °

thogonality relationship, such that each left (right) eigent
vector with corresponding eigenvalueis orthogonal to )
each right (left) eigenvector with a different corresponding-1 2D geometries

eigenvalue. Two-dimensional (planar circuit) problems are simple to
visualise, and permit accurate solutions to be obtained for
4 THE JACOBI-DAVIDSON METHOD relatively complex structures with a moderate number of

X 1 - .
The Jacobi-Davidson technique is applicable to eigenproﬁ—nknowns’ typicallyl0” to 10°. Two examples are given

lems of the generalised form (1). Here, it has been extende§'
to operate with independent left and right subspaces, so tr%aa ith d d

the left and right eigenvectors may be represented effet: -1 Lossy structure with degenerate modes

tively for non-Hermitian problems. In the standard methodThe first example consists of a 2nmw8mm square col-
a single subspace is used to span the space containing tmn of lossy dielectric material located centrally in a
desired lefandright eigenvectors, for which the theory is 20mmx20mm square cavity, discretised o @) x 100
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cell grid. The dielectric constant of the block was assumefl.2.2 Lossy structure with degenerate modes

to bee, = 10__ 21. . . The final test example follows Schmigt al. [1] and consists
The following table shows the real and imaginary comgy g cavity 20mmx20mmx 10mm with a lossy dielectric block

ponents of the complex eigenfrequency and the ca¥ity- 7mm. 7mmx8mm located centrally on the square cavity floor.
for each of the first eight cavity eigenmodes. Degeneralge gielectric constant of the block was takeneas= 10 — 2i.
eigenvalues converged to the limit of numerical round-oft3iculations were performed using axDx 10 cell mesh with

error. approximatelyt.8 x 10* unknowns, slightly coarser than the ref-

Mode Complex Freq./GHz Q erence example. The following agreement was obtained.
1 6.2145185 | 0.48687 | 6.38
2/3 | 13.8931731| 0.807264| 8.60 Mode |  Freq./GHz Q | Freq/GHz[1]
4 | 16.6253632| 0.370592| 22.43 1 | 6.1384] 0.2810] 10.92| 6.161] 0.278
5/6 19.8161824| 0.636433| 15.56 2/3 9.0865| 0.7790| 5.83 9.091 | 0.780
20.5588852| 0.485044| 21.19 4/5 11.316| 0.7583 | 7.46 11.39| 0.759
8 23.1571167| 0.394130| 29.37 6 11.416| 1.0386| 5.49 11.42 | 1.104
7 13.250| 1.1593| 5.71 13.25| 1.161
5.1.2 Loaded cavity test structure 8 13.618| 0.8746 | 7.78 || 13.66 ) 0.870
9/10 | 13.667| 0.8750| 7.81 13.78 | 0.860

Figure 2 shows an eigenmode of a cavity in a cylindrical geom-

etry, loaded with a lossy ceramic ring. The permittivity of the  The method used here is, however, better applicable to such
ceramic wase,=12.24, with loss tangent 0.3. Though conver-non-Hermitian systems, and converges uniformly even for loss
gence time increased for this structure, the eigenmodes were signgents greater than one.

cessfully identified. Localised modes in the ceramic havirgdQ

were also observed. 6 CONCLUSION

—
-3

é X 10‘ The Jacobi-Davidson method for eigenvalue determination has
Qs ] been modified to operate with separate left and right subspaces
=2 p p g p ,
g 4‘—‘ I and shown to successfully identify eigenmodes of complex cavi-
§ 1 i ties containing highly absorbing materials. The method does not
o transform the matrix operator directly, and so may be used if the
o . o . : . .
=%) ‘ ‘ ‘ ‘ operator and its adjoint are available in functional form. Addi-
L 0 2 4 6 tionally, there is no requirement for estimation of extreme eigen-

z—coordinate (m) values, and the solution may be seeded for iterative refinement.
The method has been shown to be an attractive algorithm to aid

-3
x 10
Figure 2: Gyroklystron cavity mode at 93.37GHz the design of microwave cavities containing highly absorbing ma-

terials.

The following table shows good agreement for two similar cav-
ities between eigenmodes determined by (a) this calculation and

(b) a scattering matrix calculation: 7 ACKNOWLEDGEMENTS
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1
These values are also in excellent agreement with experimen¥a}
cold-test data.

5.2 3D geometries
2
Three-dimensional geometries increase the problem complexigy]

in a number of ways

e vector field increases the number of unknowns in the solus
| )
tion by a factor of three
e many more cells are necessary to fill a 3-dimensional region
while maintaining solution accuracy [4]
e more coupling terms arise in the matrix operator

5.2.1 Cubic cavity with high degeneracy 5]

A perfectly cubic cavity with a symmetric discretisation provides
an excellent test for separation of degenerate eigenvalues. This
method successfully identified the six-fold (real) eigenvalue de-
generacies of this structure, correct to round-off error (approx
1071,
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