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Abstract

The numerical determination of the electromagnetic field
eigenmodes of a microwave cavity containing regions of
high-loss dielectric material is of technological importance
to many areas, including high power microwave genera-
tion, particle accelerator design and microwave sintering
of ceramic materials. This problem has proved problem-
atic to numerical techniques [1], causing poor convergence
and long computation times when highly lossy materials
are present. The Jacobi-Davidson algorithm [2] applied to
this problem is shown to be capable of extracting a set of
eigenmodes, even for the cases of degenerate eigenvalues
and low ohmic-Q cavity modes. Details of the theory and
numerical solution using 2-dimensional (planar circuit) and
3-dimensional electromagnetic operators will be presented.

1 INTRODUCTION

Many scientific and engineering problems require the de-
termination of a selected number of the eigenvalues, and
possibly eigenvectors, of a large system of linear equations.
Typical examples arise in electromagnetics when a field is
represented by discrete values and the determining equa-
tion is discretised in some manner, for example by finite
difference, finite element or finite integration methods. The
ease with which such problems may be solved depends on
the size of the problem, but also is strongly dependent upon
the distribution of the eigenvalues and whether they are real
or complex.

Methods for eigenvalue and eigenvector computation for
large, linear systems of equations by iterative methods fre-
quently require that the matrices be self-adjoint (Hermi-
tian). Such methods can often be applied with some suc-
cess for systems having eigenvalues with relatively small
imaginary parts, however the theoretical basis for conver-
gence is not well defined and poor convergence often re-
sults. Many basic properties of the solutions of self-adjoint
eigensystems do not hold in the general case, and more
rigourous techniques must be used if convergence is to be
ensured.

2 EIGENVALUE FORMULATION

Two electromagnetic eigenproblems will be considered
here. Firstly, a 2-dimensional planar circuit model will be
used to provide realistic test examples of moderate size, for
which solutions may be readily visualised. Secondly, a full
3-dimensional model is described and examples given to
show the effectiveness of the Jacobi-Davidson method on
larger problems.

2.1 2D planar circuit model

Simple electromagnetic planar circuits considered here are
those for which an exact two-dimensional representation
can be found in terms of a single field component. The
class includes many structures of practical use, for exam-
ple rectangular waveguides with H-plane bends and junc-
tions, which may contain columnar structures of metal or
dielectric. Such circuits have no structure in the third di-
mension other than parallel bounding planes of metal, and
possess only modes having an electric field perpendicular
to the plane.

For such a circuit having no structure in they direction,
the following eigenvalue problem may be derived

{∇2
⊥ + ω2ε(r⊥)µ0

}
Ey(r⊥) = 0

The cavity frequencies,ω, and mode structures,Ey(r⊥),
may be obtained as solutions of this eigensystem. Metallic
wall boundary conditions in thex–z plane may be included
in the numerical implementation of the differential opera-
tor. The transverse Laplacian operator is self-adjoint, and
therefore if the permittivity and permeability functions are
real then the eigensystem is symmetric, and the spectrum
will contain only real eigenvalues.

2.2 3D complex cavity model

A 3-dimensional electromagnetic operator was derived us-
ing the finite integration method [3]. The eigenvalue form
derived from Maxwell’s equations is (in normalised units)
the vector equation [1]

curl µ−1curl E− grad div εE = ω2εE

where the discretised components ofE form the eigenvec-
tor, andω2 is the eigenvalue of the numerical implemen-
tation of the operator. The divergence term is included to
remove the multiply degeneratestaticsolutions with eigen-
value zero which result from the freedom of E to include
a component corresponding to the gradient of an arbitrary
scalar field.

The finite integration method defines field components
using the Yee cell arrangement, shown in figure 1, for
which the differential operators take a particularly simple
form, and takes account of the permittivity and permeabil-
ity of each

cell.

2.3 LOSSY MATERIALS

Regions of complex permittivity, representing Ohmic loss
in these materials, make the discretised eigensystems non-
Hermitian, and therefore critically change the characteris-
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Figure 1: Yee cell structure of 3D discretisation

tics of the solution. The solution for non-Hermitian sys-
tems may often be obtained using methods derived for
Hermitian systems, provided that the system deviates only
slightly from a Hermitian problem. Here, this corresponds
to small values of the loss tangent of the dielectric mate-
rials, and solutions for such cases frequently converge us-
ing Hermitian methods. If highly lossy materials are to be
modelled successfully, a more rigourous approach is nec-
essary.

3 NON-HERMITIAN EIGENSYSTEMS

A generalised linear matrix eigensystem can be written in
the form

Ax = λBx (1)

The column vectorx satisfying (1) is an eigenvector of the
system{A,B}, with corresponding eigenvalue,λ. For ma-
trices which are not Hermitian, it is possible to formulate a
second, related eigenproblem as follows.

yA = λyB or Ay = Byλ (2)

wherey is a row vector. The vectory satisfying (2) is
a left-eigenvector of the system{A,B}, with correspond-
ing eigenvalue,λ. For a given generalised eigensystem
described by{A,B}, pairs of left- and right-eigenvectors
have equal eigenvalues, though the eigenvectors are not
necessarily equal.

The left and right eigenvectors possess a mutual or-
thogonality relationship, such that each left (right) eigen-
vector with corresponding eigenvalueλ is orthogonal to
each right (left) eigenvector with a different corresponding
eigenvalue.

4 THE JACOBI-DAVIDSON METHOD

The Jacobi-Davidson technique is applicable to eigenprob-
lems of the generalised form (1). Here, it has been extended
to operate with independent left and right subspaces, so that
the left and right eigenvectors may be represented effec-
tively for non-Hermitian problems. In the standard method,
a single subspace is used to span the space containing the
desired leftandright eigenvectors, for which the theory is

well described by Sleijpenet al. [4]. At each step, the sub-
space is updated by obtaining an estimate of the correction
to each approximate eigenvector using Jacobi’s orthogo-
nal component correction (JOCC) method derived from the
residual error. For systems which are not self-adjoint, the
left and right eigenvectors corresponding to an eigenvalue
will in the general case not be parallel, and the subspaces
spanned by the eigenvectors corresponding to a given set of
eigenvalues will be different. Therefore separate subspaces
should be maintained and updated for the solution of non-
Hermitian systems. This has been suggested in connection
with the original Davidson method for use with non-normal
matrices [5].

The modified Jacobi-Davidson method for non-
Hermitian systems operates as follows. The large
eigensystem is projected at each iteration into the current
stored left and right subspaces, and the small projected
problem solved exactly to obtain estimates of the solution
through a Ritz procedure. Separate subspace corrections
are obtained using JOCC steps on the left and right
eigenvector residuals, and incorporated in the subspaces.
Both corrections may be obtained from a single procedure,
and little computational overhead is involved in obtaining
the second correction as a by-product of calculating the
first.

5 EXAMPLE GEOMETRIES

To test the effectiveness of the method in solving for eigen-
frequencies and field eigenmodes of cavities, results from
a number of test examples will be given. The ability of an
algorithm to converge can depend on the characteristics of
the structure of the cavity. For example,

• symmetry of the structure can lead to degeneracy of
eigenvalues

• materials with high loss-tangent can give rise to non-
real eigenvalues in the spectrum

• the number of unknowns in the solution may influence
the convergence

The test examples are intended to include sufficient com-
plexity with regard to these criteria in order to ascertain the
effectiveness of the eigenvalue solver for electromagnetic
problems.

5.1 2D geometries

Two-dimensional (planar circuit) problems are simple to
visualise, and permit accurate solutions to be obtained for
relatively complex structures with a moderate number of
unknowns, typically104 to 105. Two examples are given
here.

5.1.1 Lossy structure with degenerate modes

The first example consists of a 2mm×2mm square col-
umn of lossy dielectric material located centrally in a
20mm×20mm square cavity, discretised on a100 × 100
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cell grid. The dielectric constant of the block was assumed
to beεr = 10 − 2i.

The following table shows the real and imaginary com-
ponents of the complex eigenfrequency and the cavity-Q
for each of the first eight cavity eigenmodes. Degenerate
eigenvalues converged to the limit of numerical round-off
error.

Mode Complex Freq./GHz Q
1 6.2145185 0.48687 6.38

2/3 13.8931731 0.807264 8.60
4 16.6253632 0.370592 22.43

5/6 19.8161824 0.636433 15.56
7 20.5588852 0.485044 21.19
8 23.1571167 0.394130 29.37

5.1.2 Loaded cavity test structure

Figure 2 shows an eigenmode of a cavity in a cylindrical geom-
etry, loaded with a lossy ceramic ring. The permittivity of the
ceramic wasεr=12.24, with loss tangent 0.3. Though conver-
gence time increased for this structure, the eigenmodes were suc-
cessfully identified. Localised modes in the ceramic having Q<4
were also observed.
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Figure 2: Gyroklystron cavity mode at 93.37GHz

The following table shows good agreement for two similar cav-
ities between eigenmodes determined by (a) this calculation and
(b) a scattering matrix calculation:

Mode: TE011 TE012 TE012 TE012

(a) f 93.377 103.095 92.867 102.517
Q 174.198 51.941 187.077 53.654

(b) f 93.491 103.396 92.929 102.736
Q 168.767 46.864 169.635 47.045

These values are also in excellent agreement with experimental
cold-test data.

5.2 3D geometries

Three-dimensional geometries increase the problem complexity
in a number of ways

• vector field increases the number of unknowns in the solu-
tion by a factor of three

• many more cells are necessary to fill a 3-dimensional region
while maintaining solution accuracy

• more coupling terms arise in the matrix operator

5.2.1 Cubic cavity with high degeneracy

A perfectly cubic cavity with a symmetric discretisation provides
an excellent test for separation of degenerate eigenvalues. This
method successfully identified the six-fold (real) eigenvalue de-
generacies of this structure, correct to round-off error (approx
10−14).

5.2.2 Lossy structure with degenerate modes

The final test example follows Schmittet al. [1] and consists
of a cavity 20mm×20mm×10mm with a lossy dielectric block
7mm×7mm×8mm located centrally on the square cavity floor.
The dielectric constant of the block was taken asεr = 10 − 2i.
Calculations were performed using a 40×40×10 cell mesh with
approximately4.8× 104 unknowns, slightly coarser than the ref-
erence example. The following agreement was obtained.

Mode Freq./GHz Q Freq./GHz [1]
1 6.1384 0.2810 10.92 6.161 0.278

2/3 9.0865 0.7790 5.83 9.091 0.780
4/5 11.316 0.7583 7.46 11.39 0.759
6 11.416 1.0386 5.49 11.42 1.104
7 13.250 1.1593 5.71 13.25 1.161
8 13.618 0.8746 7.78 13.66 0.870

9/10 13.667 0.8750 7.81 13.78 0.860

The method used here is, however, better applicable to such
non-Hermitian systems, and converges uniformly even for loss
tangents greater than one.

6 CONCLUSION

The Jacobi-Davidson method for eigenvalue determination has
been modified to operate with separate left and right subspaces,
and shown to successfully identify eigenmodes of complex cavi-
ties containing highly absorbing materials. The method does not
transform the matrix operator directly, and so may be used if the
operator and its adjoint are available in functional form. Addi-
tionally, there is no requirement for estimation of extreme eigen-
values, and the solution may be seeded for iterative refinement.
The method has been shown to be an attractive algorithm to aid
the design of microwave cavities containing highly absorbing ma-
terials.
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