A PORTABLE ACCELERATOR CONTROL TOOLKIT
William A. Watson 1ll, Thomas Jefferson National Accelerator Facility

Abstract are shared within the collaboration, as are modular soft-

In recent vears. the expense of creating aood control soiare components for creating control processes. Programs
y ' P 99 within an EPICS system are tied together by a network

ware has led to a number of collaborative efforts amon .
|ﬁfrastructure (the channel access library) based upon

laboratories to share this cost. The EPICS collaboration IS L o " ;
reading, writing, and monitoring changes in named vari-

rticularl ful example of this trend. Mor . .
a particularly successfu examp’e o this trend. Mo %bles. A named variable can refer to a hardware 1/0 point,
recently another collaborative effort has addressed the . o .

of a variable within an algorithm

need for sophisticated high level software, includin . . .
P 9 g The toolkit contains a number of utility programs

model driven accelerator controls. This work builds upon, S
the CDEV (Common DEVice) software framework whichWh'Ch plug into this software bus, including synoptic dis-
’ ys with interactive editors, a save/restore utility,

provides a generic abstraction of a control system, a'%r_chiving (data logging) and data browsing programs, and

maps that abstraction onto a number of site-specific co | interf M ial and f K
trol systems including EPICS, the SLAC control sys:terrfj,‘n aiarm interface. Many commercial and freeware pack-
ges have also been interfaced to this bus via a callable

CERN/PS and others. In principle, it is now possible t dsheet and the tel/ik toolkit
create portable accelerator control applications which ha grary (e.g. a spreadsnheet and the fc 00K)-
Including astronomy sites and large physics detectors,

no knowledge of the underlying and site-specific contro|
g ying P e EPICS collaboration includes over a hundred users and

system. Applications based on CDEV now provide lication devel e bl ;
growing suite of tools for accelerator operations, includingPP'lcation developers, and represents a notable software
aring effort. For the most part, this sharing is limited to

general purpose displays, an on-line accelerator mod h h h thei |
beamline steering, machine status displays incorporatiffS€ Who use EPICS as the core of their control system.

both hardware and model information (such as beam posi-
. o X .2 SOSH

tions overlaid with beta functions) and more. A survey o

CDEV compatible portable applications will be presented§OSH (for Software Sharing) is a name given to a series of

as well as plans for future development. workshops on the general topic of software sharing for
accelerators and large physics detectors. The original
1 INTRODUCTION meetings were held in conjunction with the International

Conference on Accelerator and Large Experimental Phys-
In almost any book or journal on software developmefi¢s Control Systems (ICALEPCS).
one will find reference to the explosion in the quantity of The current thrust of these workshops is to (1) develop
software development, and the cost and difficulty in devel framework within which shareable applications can
oping necessary software in a timely fashion. A typicale pyijlt, (2) develop shareable utility applications (e.g.,
rule of thumb for accelerators is that the control Systéflisplay or manipulate named control system quantities),
costs 10% of the total project, with half of that going tond (3) develop accelerator or detector specific control
software. In addition, as much as 5% to 10% of operatingpjications. The framework includes a common (abstract)
manpower may go towards ongoing software improventerface to the local control system, with common stan-
ments. dards for names of classes of devices and their attributes

In a decade of declining research budgets, this expensge a way of aliasing these to a common set).

has driven an increasing interest in software sharing within At the “Workshop on Software Sharing” following
many areas of the research community, including theal EPCS 93 in Berlin, 19 invited participants agreed in

accelerator controls community. a joint statement that “there is no fundamental reason
(from operation and machine points of view) why ... the
11EPICS primary functions in the draft list could not be imple-

One example of a successful collaboration to develapented by common generic (configurable) software and/
accelerator control software is EPICS (Experimental Phyef using appropriate common software tool kits”. [2]
ics and Industrial Control System). This software, whose This list of functions included 13 topics related to the
history is described in another paper at this conference [application environment including user interface develop-
is now in use at several accelerator sites including timeent, on-line help, a sequencer, data logging, archiving,
Advanced Photon Source at Argonne, Thomas Jeffersand system configuration. This is the area well covered in
National Accelerator Facility (Jefferson Lab), the B faca portable way (within EPICS) by the EPICS toolkit.
tory upgrades at SLAC and KEK, and several smaller What is more remarkable is that the participants stated
machines. that accelerator applications were equally shareable: mag-
EPICS provides a framework for developing low levehet cycling (and super cycles), orbit measurement and cor-
device controls, including hardware interfacing and lowection, tune measurement and correction, chromaticity
level control algorithm development. Many device driversneasurement and correction, RF gymnastics, machine

0-7803-4376-X/98/$10.00 O 1998 IEEE 2398

simulations, injection, matching, and extraction. To dat&.2 CDEV

these sorts of applications have seen only limited portabj ey, (Common DEVice) provides an interface (API) to

ity, yet represent an even larger software developmentira| control system with a simple flavor — the system
effort than all of EPICS at major accelerator labs lik@,ngists of a set of named devices to which messages may
CERN, FNAL, and SLAC. be sent. The client program has no knowledge of the
device’s software or hardware implementation (location,
2 DISTRIBUTED SOFTWARE TECHNOLOGY control system type), and only knows (or discovers at run
2 1 A Software Bus time) the list of messages to which the device responds.

CDEV is implemented as a C++ framework that pro-

If these applications are to be shareable among a largges a standard interface between an application and one
number of laboratories running different (mostly customy, more underlying control packages or systems. It serves
control systems, there needs to be a well defined commga 5, adaptor, or middleware, between a portable applica-
interface through which they can connect. This interface j§, and a local control system. In addition, it provides a

often referred to as a “software bus”. Just as hardwaggmper of features not provided by many control systems.
modules pass data over a backplane bus, so too software

Jefferson Lab, [3] should be investigated as the framew
through which these applications could access the contket
system. Two additional workshops in the previous 2 yeafdgure 1: CDEV multi-service architecture.
have continued to focus upon CDEV as an enabling tech-))])
nology for portable accelerator control applications. CDEV does not specify which networking protocol is
There are two ways in which a software bus can gesed between client and server, and can in fact support
defined, and both are used in practice. In onepéteork m'ultiple protocols simultaneously (Figure 1). When used
protocol is defined, including how resources are locate¥ith the EPICS channel access protocol, CDEV can locate
(discovered) on the network, what types of messagggndreds of device/attribute pairs per second, and receive
between programs are supported, and how these messdfj@ysands of value changes per second. The overhead of
are formatted on the network. In the second wappai- USing CDEV instead of the pfsmve EPICS AP.I is negl'|g|ble
cation programming interfacéAPI) is defined, which and vyell offsg? by the addltlpnal functionality provided,
specifies a set of routines to be called for communicatifgyen if portability is not a desired goal.
with other programs. The protocol on the network is not When used with another custom TCP/IP based proto-
defined, and in fact multiple protocols may be used. TH&! (CLIP) developed at Jefferson Lab, CDEV can deal
second technique is equivalent to definingrtual accel- With complex queries to (for example) a model server
erator, as presented by Kanaya at ICALEPCS ‘93. [4] returning arrays of two-dimensional transfer matrices
There are many software buses of each type in exigetween specified devices._ T_he client application remains
ence today, and it is difficult to choose one to be a stat@ware of which protocol is involved.
dard: in fact the choice is somewhat a matter of Additional interfaces to other control systems may be
preference. The choice of CDEV as a potential standa®glded to CDEV with a modest amount of programming,
interface was driven by these requirements of the bus: anging from a couple of weeks of learning and coding for

« ability to connect to legacy control systems a simple system, to a few months for a complex system.
. . . SLAC has interfaced CDEV to its control system on VAX/
¢ high performance, with fully asynchronous behavior

VMS computers, and CERN/PS has done likewise for an

* support for a high level view of the control system, |BM/AIX system. This is an extremely small amount of
dealing with named accelerator devices (magnet, effort to support portable software.

bpm) each with multiple attributes (field, x-position,
beam current) instead of a view consisting of hard- 2.3 Alternatives to CDEV

ware addressgs or l(_)W level control pglnts) One possible alternative to CDEV which was considered
* support for object oriented programming, and in par-and continues to be evaluated) is CORBA, the Common

modules (programs) pass information over the softwafe
bus. Application
In May of 1995, CERN hosted a workshop titled “A| ppl
Softwarebus Common to Accelerators and Large Expeti-CPEV AP > 3
mental Physics Control Systems”. Twenty-five particir system layer—p| CDEV
pants agreed that (1) applications “above the bus” (hgst
side vs. hardware side) held the most promise and bengfit 4 other
for sharing, and (2) CDEV, a C++ framework developed;t service layer— EPICS| CLIP | CORBA é:;?sr{teromls
rk

ticular the C++ language Object Request Broker Architecture, which defines stan-
* support for rich messaging (complex queries with dards for object-oriented distributed-programming com-
complex replies) munication mechanisms. [5] Implementations of CORBA

2399

are available from multiple vendors on all major platin addition, the following EPICS tool is in the process of
forms, and the latest version of the standard addressesmversion; others will be converted as time allows.

interoperability among vendors. dm Display manager; one of the two synoptic dis-
While CORBA is well accepted in the marketplace, play programs in EPICS, with the ability to display

there are several problems with making it the software bus values as text, color (of a graphic), or through widgets

for control systems, and performance is one. CORBA is such as meters and push buttons. Menus and push but-

about 10 times slower at locating resources on a network tons support executing scripts or bringing up addi-

than can be achieved with custom protocols — primarily tional displays.

because the location services deal with only a single

resource at a time. In contrast, EPICS and CLIP buffé3 New CDEV tools

requests for name resolution, achieving much high&eyeral new utilities have been developed or are currently
throughput for large, complex applications such as interaﬁ-eing developed within the CDEV framework:
tive displays containing a thousand or more variables.
Another CORBA difficulty is the complexity of the
API for dynamic invocation (talking to remote objects
whose interface is not compiled into the current program).
This dynqmic_ binding capability (discus_s_e.d further in the measurement, additional actions may be performed
next section) is a key feature of many utilities. including time delay, wait for a value to settle, or
Nevel’theleSS, CORBA continues to be of interest. One invoke a script_ Plans include automated min/max
avenue often discussed is to use CDEV over CORBA, and Optimization of one parameter (done routine'y at
to use CORBA only to locate servers and to transport mes- SLAC with their software).

Sages. In this case one would use a custom (accel_erazt&rot Another tool modeled after a SLAC utility, this
device) resource locator and CDEV as the APl and higher program displays attributes of devices (suctbais

level frlamgvr\]/orr]k. C[.)E.V ngld easily SUpF;:OI'ththIS S|multz;1- the integral field in a magnet) as a function of position
neously with the existing direct support of other protocols. along the beane) in the machine. While this appears

to be specific to accelerators, the attribute represent-
3 UTILITY APPLICATIONS ing position could easily be replaced by any other col-
lating parameter.

xarr Archive data browser. Originally developed to

There are a large number of useful controls applications directly read EPICS archive data files, this program is
which deal only with named values, and are not accelera- peing converted to a CDEV based client/server archi-
tor specific. These include operator displays (graphical — tecture. StripTool will also be modified to initialize
a meter showing magnet current, or text based — a list of jmmediately with archived data from the server, and
all magnet setpoints and currents), data archiving (current to allow scrolling backwards in time. Additional fea-
in the magnet for the last year), or save and restore (of the tures in the new archive system are planned. [7]
magnet setpoint). These control system values are refgﬁ-ﬂog A distributed error logging system. Includes a
enceq by a single name (e.g. magne_t?-setpoint) or through logging daemon for each host (Unix and VxWorks), a
a pair of names (magnet7, setpoint) corresponding 10 yaanase server, client logger and browser libraries, a
device name and atiribute name. Motif browser, a tcl browser, and (soon) a Java

Because of the proven usefulness of the EPICS utility prowser. Logging client library supports filtering

programs (which are name based), one development activ- (suppression of repeating errors). Browser supports
ity has been to port those tools to CDEYV, allowing them to interactive suppression of uninteresting errors.

be used with non-EPICS servers and protocols.

xact X-windows Automated Correlation Toolkit.
Modeled after the SLAC correlation package, this
utility can step 1 or 2 variables, and measure hundreds
of other variables at each step. As part of each step or

3.1 Name Based I/O

) 4 CDEV COMPONENTS
3.2 Converting EPICS tools

Two EPI licati h readv b CDEV is (1) a standard API for communicating with
wo CS applications [6] have already been convert vices, (2) a C++ framework implementing this API, (3)

from calling the EPICS channel access library to making 5., - package implementing a (subset of) this API, and

CDEV calls. (4) a set of applications and libraries useful in building dis-
stripTool Strip chart graphical application, with 8 coloredtributed systems. This section will briefly review the high-
pens. Interactively choose variables, including wildtights of each, emphasizing recent developments.
cards. Save / restore of display definitions.

alh Alarm handler; monitors the alarm (error) sta#-1 C*+ Library
tus of the referenced values and summarizes the errdifse mainstay of CDEV is a C++ class library for develop-
in a tree hierarchy. Indicates alarm through coloing both applications and adaptors to additional control
blink, and beep. systems. The library includes:

2400

* directory servicestook up devices by name or by connect Java applets to the control system. (See Fig-

type, including wildcard matching; discover at run ure 2.)
time supported attributes and messages; get type foServer Shell A skeleton server program which can be
given device used to build a new CLIP server by writing a single

* asynchronous messagirtigh throughput, buffered routine to handle one message. All connection man-
1/0: callback mechanism, time-outs agement and message queueing and routing is han-

dled by the shell. Used to implement the NameServer,
Gateway, and the model server Artemis (described in
the next section).

¢ string and composite self describing binary data mes-
sages, with support for multiple architectures (byte

swapping)

* |/O operationgroupingandsynchronization

* collections for operations on vectors of devices, with C++ application
support for passing the device array intact to the CDEV applet
underlying control system for higher performance on clip Java CDEV

some systems

e virtual I1/0: use of multiple control systems from a
single calling interface

¢ support for EPICS, CLIP (plus others at their sites) C++ application Gateway
* base class for integrating new control systems CDEV CDEV
* extensive documentation

local clip local clip

4.2 Java Package | | | |

The Java package is written in 100% Java, allowing | |
applets to be written to run inside of commercial wep local server shell server shell
browsers. [8] It supports the same calls as in C++ for send-| server
ing messages to devices, with network support for the
CLIP protocol also in 100% Java. The package currently - -
does not include support for groups or collections. Figure 2: CDEV network components, showing logical

In addition to the Java-cdev package, there is also (ffftWork connections for two protocols, with gateway
beta form) a graphics library for producing animated di¢onnected applets and applications.
plays along the lines of those produced by dm (above).

Artemis NameServer

5 ACCELERATOR APPLICATIONS

4.3 tclftk

) A certain amount of success has been achieved in the past
It has been the experience at Jefferson Lab and elsewhﬁr%haring beam optics modeling codes, such as MAD,
that _thetcl scripting language _and itk _graphics toolkit 'DIMAD, PARMELA, and also analysis codes, such as
provide an extremely productive environment for rapioesorVE. These applications are off-line applications

prototyping of control applications. [9] Tcl has been intery;ith no connection to a control system, yet do represent a
faced to CDEV, allowing scripts to access the entire COpytaple software sharing success.

trol system and accelerator model at Jefferson Lab. Sharing of on-line applications is somewhat more diffi-
cult, and has met with only limited success. Much of the
lack of success can be attributed to the lack of a common
The latest extensions to CDEV include a set of netwoikterface to the control system.

components useful in building up a large distributed sys-
tem. These components include: 5.1 Standards or Conventions Needed

4.4 Network Components

NameServerSupports the mapping from a namedrhe model design codes mentioned above have been suc-
resource to server address and port. A CDEV devioessful in moving from site to site because they provide
may be implemented as a single resource, or as a sinificant capabilities, while enforcing few constraints
of resources on different servers. Communicationpon the users. Each program has a simple naming con-
with the name server is asynchronous and bufferedention for devices, and for classes of devices, and for
locating resources 10 times faster than CORBA. attributes of devices. For example, DIMAD defines a qua-

Gateway Allows multiple applications to connect to drupole magnet as something of type “quadrupole” having
the control system through a single point, producingharacteristics “L” (length), “K1” (strength, in 1?1)3 and
only a single connection to any real-time system. Pefaperture” (radius in meters). Instance names are restricted
forms protocol conversion from the external protocalo eight significant characters, and everything is case
(CLIP) to the site-specific protocol. Currently used tansensitive.

2401

These are exactly the types of conventions which need corrections. [13] It uses CDEV to monitor beam posi-
to be standardized in order to allow portable on-line appli- tion monitors, obtain model information, and drive
cations -- conventions on names of classes of devices, and actuators. Multiple algorithms are allowed, with sup-
conventions upon what capabilities (such as read and write port for SVD and Prosac. [14]
attributes) these devices support.

6 SUMMARY
5.2 CLASSIC
Among recent attempts to standardize the definitions g{ogress has_bee_n made in forming a new _mulfu-lab collab-
accelerator objects is the CLASSIC project. [10] CI_Asgranve effort in high level accelerator applications devel-
SIC is an acronym for Class Library for Accelerator SysQPment' The CDEV. framework_ has b_een use_d_ to support a
tem Simulation and Control. Its goal is to provide: d"’efse _set of on-||r_1§_ tools, including modified EPICS
. . . .__applications, new utilities, and a small number of beam
*aCHt clas§ library for accelerator design, SlmuIat'orbased applications. Portability of applications between
and operation EPICS and non-EPICS control systems has been demon-
* a mechanism for C++ code sharing and standardizastrated.
tion in the accelerator community, and New developments at Jefferson Lab, SLAC, and other
* a platform to exchange new ideas in code develop- |abs will continue to expand the set of CDEV compliant
ment. applications, and the work of affiliated groups like the
The collaboration includes SLAC, CERN, FNAL, DESY,CLASSIC collaboration yviII further i_ncrease the amount
Jefferson Lab, and the University of Maryland. of software runnable at sites supporting a CDEV adaptor.
CLASSIC includes a standard input file format with
mnemonic type codes for all accelerator elements, mem- 7 ACKNOWLEDGMENTS
ory structures to represent these beamline components
composite beam lines, representations of lattice transtréct DE-ACO5-84ER40150
maps, representations of misalignments, interfaces to algo- '
rithms, and an interface to the on-line control system (the
plan is to use CDEV). This is still a work-in-progress, with 8 REFERENCES
the initial software being tested within the framework of P] ‘Experience with EPICS in a wide variety of applications’, M.

?eogrk supported by the U.S. Department of Energy, con-

new version of MAD. Kraimer, ANL; M. Clausen, DESY; W. Lupton, KECK; and C.
Watson, Jefferson Lab, these proceedings, PAC '97.
5.3 Unified Accelerator Libraries [2] ‘Panel Session on Software Sharing’, ‘About the Saturday Work-

UAL [11] is another effort to develop an environment for i/lhotﬁ"'Bb E“ip‘:’ IC:IE,E;Cl ;54?3520::&”98’ Nucl. Instr. and
portable accelerator control applications. One major thru ﬁ et '_n ys_' es: (_) 513-515. _ _
of this effort is to standardize descriptions of accelerat&% ‘An Object-Oriented Class Library for Developing Device Control
. . Applications’, J. Chen, W. Akers, G. Heyes, D. Wu, and C. Watson,

structures. Unlike t_he CDEV and CLASSIC prOjeCtS_, UAL ICALEPCS 1995 Proceedings. See also http://www.jlab.org/cdev/.
does not standardize upon C++ as the programming | A i .

. L. 1 irtual accelerator and fundamental guidelines towards sharable
guage, but instead uses the scripting language PERL as h]e

) 5) software for accelerator control systems’, N. Kanaya, ICALEPCS
glue to bind together a set of programs in potentially mul- 1993 Proceedings, 497-500.

tiple languages into a cohesive system. [5] Re CORBA, see http:/iwww.omg.orglomg00/wicorba.htm.

At this point, the UAL project anticipates USing[G] Private communicatiorStripTool converted by C. Larrieu, Jeffer-
CORBA as the software bus through which applications son Labalh by Janet Anderson, Argonne National Lab.
will gain access to the control system. [7] ‘Design of a new EPICS archive system’ presented at the Vancou-

ver spring 97 EPICS collaboration meeting by Matt Bickley.

5.4 CDEV Compliant Accelerator Software [8] ‘A Java Package for Building Client Applets to Access TINAF
In addition to the genera| purpose utility applications Accelerator Data Across the Internet’, C. Quach, master’s thesis,
listed in the previous section, there are a small number of CMistopher Newport University, 1997.
accelerator OptiCS applications already finished: [9] ‘Rapid Application Development Using the Tcl/Tk Language’, J.

Artemis Artemis i lerator b i f van Zeijts, PAC 1995 Proceedings, Vol. 4 p. 2241.
r e".“s r EMIS IS an accelerator ea.m Op_ ICS server C[FI.O] ‘The Classic Project’, F. C. Iselin, Computational Accelerator Phys-
simulation and control. [12] It provides first- and sec= ;¢ Proceedings, 1996, 325-330.

ond-order transport matrices, beam envelop prOpaq%._l]‘Unified Accelerator Libraries’, N. Malitsky, R. Talman, Computa-

tion, and particle ray tra_tcmg. It currently uses tional Accelerator Physics Proceedings, 1996, 337—342.
DIMAD as a back-end, but is adaptable to other moqu] ‘The Use of Artemis with High Level Applications’, B. Bowling,

eling engines. It uses CDEV to obtain current lattic€ "y shoaee, S. Witherspoon, ICALEPCS 1995.

settings and to service clients. [13]“Design and Implementation of a General Slow Orbit Control Pack-
Atlast Atlast (AuTomated Lock And Steering Toolkit) age atJefferson Lab”, J. van Zeits et al., this conference.
is a modular program for beam based energy and orfi#] ‘Prosac Algorithm’, Y. Chao, CAP 96, 319.

2402

