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Abstract The paper is organized as follows: in section 2 we

A finite difference scheme is presented to solve the Fokkefg’)-resent the numgrlcal scheme for SOIV.mg thg Fokker-
s ; ) . Planck equation in (2+1) variables and in section 3 we
Planck equation in (2+1) variables numerically. This

Pﬁesent some examples and applications to accelerator
physics. Section 4 summarizes the main results and gives a

list of open questions for future studies.

scheme is applied to study stochastic beam dynamics
two-dimensional phase space.

1 INTRODUCTION 2 NUMERICAL SCHEME FOR SOLVING THE

One important problem of accelerator physics is to inves- FOKKER-PLANCK EQUATION
tigate the particle motion under the influence of noise [1],
There are various sources of noise: rf noise, random pow
supply ripple, random ground motion, restgas scattering,
and quantum fluctuations due to radiation. The physic
guestions one wants to answer are: what is the longtime d

behaviour of the dynamics, what is the probability for the i1 =22 (1)
particle to hit the vacuum chamber (and then be lost) (mean

first passage time), what are the average fluctuations of thed

particle around the periodic design orbit of the accelerator _

(moments), and what is the time evolution of the probabil-ds " > —an(wn) = as(ry, @2) Fag(z)m +ase - (2)

ity density (transient and stationary behaviour). . . . .
y y( y ) BNIth m, 12 a Gaussian white noise vector process(z )

Mathematically stochastic systems can be modelled %’an be an arbitrary nonlinear potential (field)( )
stochastic maps (in the time discrete case) and by stochastic y P A1 L2

differential equations (s.d.e.) in the time continuous cassgﬂtiggltﬁf d\(/)?: d:r;;o;;le”:se dad]mpr"qur;e;ﬁs(ggg dgﬁ;ve
In the following we will restrict our considerations to s.d.e. P ang; rep

with Gaussian white noise. Gaussian white noise is a veﬁ?'se term. The corresponding (Ito) Fokker-Planck equa-

good approximation in many accelerator problems [1]. The?" for the probability density reads [2]

solution of these s.d.e. are Markovian diffusion processes j
which can be described by the Fokker-Planck equation [2]. %P(xh T2, 8) =

e restrict our investigation to stochastic dynamics in two-
Imensional phase space. The general equations of motion
e want to study are of the form

The Fokker-Planck equation is a partial differential equa- )
tion for the probability density and the transition probabil- = — g w2 pz1, 22, 8)] +
ity of these stochastic processes. P !
In general, the stochastic equations of motion of a par- +a—[(a1(a:1) + az(z1,22)) - (1, 22, 8)] +
ticle in an accelerator are very complicated and can not 3322
be solved analytical!y, therefqre one has to use numerical 18_2[(a§(x1) +a2) - play, 2, 5)] - 3)
schemes. One way is to consider the s.d.e. directly. An al- 2 03
ternative way is to investigate and solve the Fokker-Planck ) ) i
equation. _Equatlon 3) can be written in the form of two fluxes, one
In this paper we study stochastic beam dynamics in twd” *1 and one inz; such that
dimensional phase space. We describe a finite difference op OA OB
scheme to solve the corresponding Fokker-Planck equation 95 o 0my (4)

with two phase space variables plus time. Extensive nu-

merical simulations for this kind of problem have been pera form which suggests to use an operator splitting method
formed in [3] using finite elements for the partial differ-[4]. First we evaluate implicitly the, derivative and then -
ential equation and Monte Carlo simulations for the s.d.ealso implicitly - thex; derivative with a tridiagonal scheme
Here we concentrate on the finite difference scheme be-

cause of its simple implementation, its flexibility with re- ntd o, gtz gt
. L. r P;;i " — D i+ i,j—%
spect to different boundary conditions, the straightforward ) A = 2A 2 (5)
extension to higher dimensional problems, its efficiency ‘f T2
concerning CPU time and because it is easy to understand ~ prt! — p"' "2 prtl ol
. . . 1,7 (2Y i+1,j i—1,j (6)
the physical meaning of each term in the scheme. As -2 2Axq
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with D22:04D11=0.08
. =D Pij+1 — DPij
2 A.rg

+la1(z1) + az(z1, 22 + ACUQ)]@ (7)

stationary solution ——
+ Iy

where we have s&D = [a(71) + a3]. Making the von
Neumann analysis of stability it turns out that the scheme
is unconditionally stable. For more information see [5],[6].

3 RESULTS AND EXAMPLES
3.1 Harmonic oscillator

The first example we have studied is the damped har-
monic oscillator with strong diffusion i.ex; (z1) = K1,
as(x1,x2) = Yx2, as(zr1) = 0 anday = 0. K,v,0 are
constants. Since this problem can be studied analytically
[7] it served to check our numerical scheme. With the pa-
rameter setX'’ = 1, v = 2.1, 0 = 0.8, a 80x 80 grid,
Azp = Azo = 0.1, As = 7/1000 and the exact solu-
tion ats = 0.95 as initial condition we obtained the time
evolution of the probability density depicted in figure 1.

Figure 2: Dys = 0.4, D1,=0.08, view of the stationary
density in phase space. dtt1000 Finite difference inte-
pT— gration.

D22-04D11=0.24

stationary solution ——
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Figure 1: Density evolution in the damped linear harmonic
oscillator equation, drift and diffusion resulting from the
stochastic excitation.
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3.2 Duffing oscillator

As a second example we have investigated the Duffing os-
cillator with damping, multiplicative and additive Gaus-
sian white noise. In this casg (z1) = w?[ax; + ez},
az(z1,72) = 2TWT9, az(r1) = —w?y/2Dy 71, anday =
V2Dgs. w =1, = —1,7 = 0.2,¢ = 0.1 are constants.
For two different sets of noise intensitié |, D2 we ob-
tained the results shown in figure 2 and figure 3. Figure 3: Dy = 0.4, D1;=0.24, view of the stationary

In this nonlinear system with multiplicative noise onedensity in phase space. dt2000 Finite difference inte-
can observe a noise induced transition [8]. In the additiv@ration.
noise case the system has two stable points just like the
deterministic system. Under the influence of multiplica3.3 Beam-beam interaction in storage rings under the in-
tive noise the probability density at the origin grows. Fur- fluence of noise
ther increasing of the strength of the multiplicative noise
changes the stability of the origin - the origin becomes &/e have made a preliminary study of the the beam-beam
stable point. interaction in storage rings under the influence of noise.
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The model we have chosen was defined by

dp _ O(zap)
0s n 8161 +
) , 1 2
a—@[(a@ +w zy + f(x1,5))p] + §a—m§(dp)~ (8)

2

1,
with f(z1,s) = 3, —87&w(=5"")d(s = nL). We
set the parameters g): 0.000147, 7 = 0.0000310, w =
0.7, & = 0.07 (see figure 4).

Beam-beam effect Q=3.7, 100 turns

accelerator models such as higher dimensional problems
(coupled betatron motion), non- Gaussian white noise per-
turbations of Ornstein-Uhlenbeck type and explicitly time
dependent coefficients(..., s).
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Figure 4: Electron case. Density for the beam-beam effect
with Q=3.7,¢ = 0.07, damping time 250 turns. The lower
figure is the projection onto the phase space of the areas of
highest probability.

4 SUMMARY AND CONCLUSIONS

In this paper we have presented a robust finite difference
scheme for the numerical solution of the Fokker-Planck
equation in (2+1) variables. The scheme has been checked
with finite element calculations and with direct numerical
simulations of the underlying s.d.e. It seems to be a good
candidate for solving more complicated and more realistic
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