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1 INTRODUCTION

In this paper we consider an example of a highly
isochronous beam line that can be used in the Optical
Stochastic Cooling method [1], [2] to bypass an optical am-
plifier. As it is stated in [1], there are stringent requirements
on the time-of-flight properties of the bypass lattice em-
ployed in a cooling scheme. Namely, it is necessary to pre-
serve relative longitudinal positions of particles inside the
bunch from the beginning to the end of the bypass with the
accuracy ofλ/2π, whereλ ' 0.6 µm is a carrying (opti-
cal) wavelength. At first glance,λ/2π is such a small value
that reaching this accuracy looks nearly impossible. How-
ever, simulations show that a carefully designed bypass can
meet all the requirements even with rather conservative tol-
erance to errors. Currently, we are planing to build a highly
isochronous beam line where we can learn how to handle a
difficult problem of time-of-flight operation at record accu-
racy. Preparations for this experiment are described in the
accompany paper at this conference [3].

2 BYPASS LATTICE

The isochronicity of the bypass requires that the bypass be
an achromat; and the dependence of the path lengths of
electrons from energy, coordinate and angular deviations
vanish. Theoretically, an achromat of the second order and
higher can be made [4]. In practice, this has been proven
to be impossible due to the tight space constraint in the
planned experimental area. Therefore, in this design we
aimed at finding a first-order achromat with weak second
and higher order aberrations and large tolerance to errors.

As shown in Figure (1), the bypass lattice is mirror sym-
metric about the center. It contains one combined func-
tion magnet in the center, two approximately parallel faced
dipole magnets, eight quadrupoles and six sextupoles.

After a careful selection of the first-order solution, aber-
rations above the second order become negligible and
the second-order aberrations become weak. To minimize
the remaining second-order aberrations, six sextupoles are
placed in the bypass. The three independent sextupole
strengths are fitted to minimize nine second-order time-of-
flight matrix elements:T511, T512, T522, T533, T534, T544,
T516, T526, T566 (in TRANSPORT notation). Each matrix
element was considered to be small if the path length de-

∗Work supported by DOE under Contracts DE-AC03-76SF00098 and
DE-FG03-95ER40926.

B
e
t
a
-
f
u
n
c
t
i
o
n
s
,
 
m

Figure 1:The beta-functions and the dispersion function of the
bypass. Magnet locations, except sextupoles, are shown in the
top.

viation associated with this coefficient at the end of fitting
procedure fell below 0.1µm. As a result, the ideal lattice,
i.e. the lattice without errors, met all the constraints.

3 SIMULATION RESULTS

In order to have a detailed check of the isochronicity of
the bypass lattice with errors, we performed a ‘brute-force’
particle tracking using code COSY INFINITY[5]. In all
simulations we looked at the spread of the longitudinal co-
ordinates of104 electrons after their passage through the
bypass. The electrons entered the lattice at the same time,
but had distributions in energy, transverse coordinates and
angles. We assumed that all beam distributions were Gaus-
sian with the horizontal emittanceεx = 1.1 × 10−7 m·rad,
the vertical emittanceεy = 6×10−8 m·rad and the relative
energy spreadσ∆E/E = 7 × 10−4, as measured in [3].

At the beginning, we calculated the spread of path
lengths for an ideal lattice without errors. The result of sim-
ulations with and without sextupoles correcting second or-
der aberrations is shown in Figure (2). Without sextupoles,
the spread of path lengths is not acceptable.

Then, we included static errors, i.e. errors due to manu-
facturing, assembly and calibration of the magnets, mis-
alignment errors and tilt errors. Error specifications are
given in Table I. (We assumed all errors having Gaussian
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Figure 2:Histograms showing a spread of the pathlengths for the
ideal lattice: a) without sextupole correction (σ = 0.74µm), b)
with sextupole correction (σ = 0.09µm). Here and in subsequent
similar pictures all sigmas are given for a fitted Gaussian distribu-
tion, which is shown by the dashed line. Note that the scale of the
horizontal axis is ten times larger for the first histogram.

Table I: The specification of the errors.
Static errors

Setting errors σ(∆B
B , ∆G

G , ∆S
S ) = 1 × 10−3

Tilt errors, [mrad] σ(∆ψ) = 0.2

Misalignment errors
in x, y, z [mm] 0.15, 0.03, 1
Multipole errora)

dipoles σ( b3
b1

) = 1 × 10−4 at r = 3cm

quadrupoles σ( b3
b2

) = 5 × 10−4 at r = 5cm

Dynamic errors
Jitter in x, y 0.15 mm, 0.04 mm
Jitter in x′, y′ 0.10 mrad, 0.03 mrad
Energy jitter 0.5%
Power supply ripple 1 × 10−4

a)b1, b2 andb3 are the dipole, quadrupole and sextupole
components of the magnetic field.

Figure 3: Histograms showing a spread of the pathlengths due
to the static errors: a) before correction (σ = 1.57µm), b) after
correction (σ = 0.181µm). Note that the scale of the horizontal
axis is ten times larger for the first histogram.

Figure 4: Histograms showing a combined effect of all static
errors and all dynamic errors: a) first seed (σ = 0.194µm), b)
second seed (σ = 0.169µm).

distribution truncated at±2.5σ, whereσ is the standard
deviation of the distribution).

The static errors can be corrected to a certain extent us-
ing a beam-based correction technique. For example, as
soon as static errors were added to the bypass lattice, the
path length spread rose to about 1µm (see the histogram
in Figure 3a). This growth was mainly due to the setting
errors leading to the linear distortions to the lattice. Tuning
two families of quadrupoles, excited symmetrically (QF)
and asymmetrically (QD), allowed us to reduce the spread
to∼ 0.2 µm (see, the histogram in Figure 3b).

There are also dynamic errors, i.e. errors that change
each time the beam passes the bypass. They are smaller
than static errors, but cannot be fixed with beam-based
technique. Figure (4) shows the combined effect of all
static and dynamic errors found in two seeds.

4 ANALYSIS

In this section we perform a quantitative analysis of the
effect of time-of-flight errors. For this purpose we calculate
the degree of coherence between the radiation fields of two
undulators, which can be characterized by a dimensionless
correlation function [6]:

γ (τ) = 〈E1(t)E∗
2 (t+τ)〉

[〈|E1(t)|2〉〈|E2(t)|2〉]1/2

' exp
{
−k2∆`2

2

}
exp

{
−∆ω2τ2

2

}
exp {iω0τ} ,(1)

whereE1 (t) andE2 (t) is the far field beam radiation in the
first and second undulators, respectively,∆ω is the band-
width of the radiation field,k = ωo/c is the wave number,
c is the speed of light andω0 is the central frequency of the
radiation field. Averaging, denoted by the brackets〈...〉,
involves integration over a large time interval.

The second exponent in Eq.(1) shows that the coherence
drops with the characteristic time scale1/∆ω. The first ex-
ponent in Eq.(1) shows the effect of imperfections. It shows
that the coherence drops with increasing particle longitudi-
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Figure 5: The field of beam radiation in the undulator with ten
periods: a) the radiation fieldE1(t), b) the radiation fieldE2(t).
Only a short pattern of the field near the center of the radiation
pulse is shown.

nal mixing,∆`, during the beam passage between the two
undulators.

We performed the simulation of the coherence of the
fields of electron bunch radiation in the first and the second
undulators with a ‘brute-force’ technique. In these simu-
lations we assumed that the two undulators are identical
and each undulator has ten undulator periods. The central
wavelength of the radiation spectrum is0.6 µm. First, we
model the fieldE1(t) by taking a sum of the radiation fields
of 104 electrons randomly distributed along the bunch with
uniform average longitudinal density. An example of such
a field is shown in Figure (5a). Then, we reproduce the
actual mixing of the longitudinal coordinates of electrons
within the bunch that occurs during the bunch passage
through the bypass lattice and model the fieldE2(t). An
example of this field is shown in Figure (5b). In this exam-
ple we consider a case when all kind of errors are present
(see histogram in Figure 4b).

Finally, we calculate the correlation function of two ra-
diation fields and plotted it in Figure (6a). The maximum
of the correlation function characterizes the degree of co-
herence between the radiation fieldsE1 andE2. It should
be 1 if no mixing is present, but here it is dropped to 0.21.
According to Eq.(1), this degree of coherence corresponds
to ∆` = 0.171 µm (recalling thatλ = 0.6 µm), which is in

γ(τ)

γ(τ)

τ

τ

∆τ

Figure 6: The correlation function of two radiation fields for a
beam with the following parameters: a)εx = 1.1 × 10−7 m·rad,
εy = 6 × 10−8 m·rad,σ∆E/E = 7 × 10−4; b) εx = εy = 10−8

m·rad andσ∆E/E = 3 × 10−4.

good agreement with the spread of the pathlengths of 0.169
µm in Figure (4b). The degree of the coherence let us also
conclude how machine imperfections and beam parameters
effect damping time in Optical Stochastic Cooling. In the
above example, we should expect approximately 5 times
longer damping time, than in the ideal case.

Figure (6b) shows the correlation function calculated for
the same lattice and with the same errors, but forεx =
εy = 10−8 m·rad and forσ∆E/E = 3 × 10−4, i.e. for a
beam parameters similar to the beams in the TEVATRON
collider. The degree of coherence rose to 0.85. Thus, only
15% increase in the damping time is projected in this case.

5 CONCLUSION

We have designed a demonstration beam line to bypass
the amplifier and to provide a necessary time delay in
the method of Optical Stochastic Cooling. This involved
designing a first-order achromat with corrections of the
second-order geometrical and chromatic aberrations affect-
ing the time-of-flight properties of the beam line. We have
shown, by doing various simulations, that this beam line
can meet design requirements with rather conservative tol-
erance to the errors.
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