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Abstract

Intrinsic aberrations are those which occur due to the finite
length of the desired field configuration. They are often
loosely ascribed to the fringing field. This is misleading as
it implies that the effects can be minimized by shaping the
fields. In fact, there is an irreducible component related to
the broken symmetry. It is present even in the hard-edge
limit, and moreover, the other (soft-edge) effects can be
simply ascribed to the intrinsic aberration spread over a fi-
nite length.

We rederive the aberration formulas for quadrupoles us-
ing a Hamiltonian formalism. This allows for an easy com-
parison of electrostatic and magnetic quadrupoles. For dif-
ferent combinations of large and small emittances in the
two transverse planes, it is found that in some situations
electrostatic quadrupoles have lower aberrations, while in
others, magnetic quadrupoles are better. As well, we dis-
cuss the ways in which existing transport codes handle
quadrupole fringe fields. Pitfalls are pointed out and im-
provements proposed.

1 INTRODUCTION

A common prescription for quadrupole design is that the
beam occupy no more than a certain fraction, usually 1/2 to
3/4, of the aperture. Another common prescription is that
the longer the quadrupole is compared with its bore diam-
eter, the better. As well, it is common practice to carefully
round the ends of the poles. We show that none of these
common practices can be validated by the quadrupole dy-
namics up to 3rd order in force.

The misconceptions are perpetuated by existing trans-
port codes likeGIOS[1] andCOSY[2], because they allow
one to make calculations with no fringe fields. Then when
fringe fields are included, aberrations increase. In fact,
the no-fringe-field cases are non-physical and such calcula-
tions should not be permitted in transport codes. The aber-
rations in question are not caused by the fringe fields, but
by the broken symmetry inherent in a quadrupole of finite
length.

We start with the quadrupole Hamiltonian and find
canonical transformations for both the electrostatic and
magnetic cases which eliminate the derivatives of the quad-
rupole strength up to 4th order. In this way, we easily re-
produce the known aberration formulas, but with additional
physical insight.

2 THEORY

2.1 Electrostatic

When using the longitudinal position as independent vari-
able, the HamiltonianH is just the longitudinal momen-
tum:

H = −
√

p2
0 − 2mqΦ − p2

x − p2
y. (1)

The electrostatic potential isΦ(x, y, z) andp0 is the refer-
ence momentum. We will benefit from cleaner and more
transparent notation if momenta are measured in units of
p0. This has the additional benefit that to first order,
px = x′. Additionally, we let the potentialΦ in units of
the reference kinetic energyp2

0/(2m). Then

H = −
√

1 − Φ − p2
x − p2

y. (2)

We expand the square root to 4th order in coordinates and
ignore the constant:

H ≈ 1
2
(Φ + p2

x + p2
y) +

1
8
(Φ + p2

x + p2
y)

2. (3)

To the same order, Laplace’s equation gives for the ex-
pansion of the quadrupole potential:

Φ = V (z)(x2 − y2) − V ′′(z)
12

(x4 − y4). (4)

The final Hamiltonian, correct to 4th order is

H =
1
2

[
V (x2 − y2) − V ′′

12
(x4 − y4) + p2

x + p2
y

]

+
1
8

[
V (x2 − y2) + p2

x + p2
y

]2
. (5)

The trouble with applying this to simple cases like thin
lenses and hard-edge limits is the presence ofV ′′(z), which
becomes singular in those limits. In most cases, one sacri-
fices physical insight and simply traces particles with this
Hamiltonian, using a more-or-less realistic functionV (z).
For example, the approach taken inGIOS[1] is to leave
it up to the user to specify ‘fringe field integrals’ such as∫

V 2dz through the fringe fields. However, this leaves
much room for error; different integrals may not be real-
istic or consistent with each other. Moreover, if one needs
to solve Laplace’s equation to find fringe field integrals,
one might as well use the solution directly in a ray-tracing
code. If one does go through this exercise, one discovers
that the higher order aberrations are relatively insensitive
to the ‘hardness’ of the quadrupole edges. This leads one
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to suspect that the aberrations are dominated by an intrin-
sic effect which has nothing to do with the detailed shape
of the fringing field. Such is indeed the case.

It turns out to be possible to find a canonical transforma-
tion which eliminates the derivatives ofV (z). In our case,
we wish to retain terms to 4th order in the Hamiltonian (3rd

order on force), and the transformation(x, px, y, py) →
(X,PX , Y, PY ) has generating function

G(x, PX , y, PY ) = xPX + yPY +
V ′

24
(x4 − y4) +

−V

6
(x3PX − y3PY ). (6)

To the same order, this yields the transformation

x = X +
V

6
X3

px = PX − V

2
X2PX +

V ′

6
X3. (7)

They-transformation is obtained by replacingx, px, X, PX

with y, py, Y, PY andV with −V . Note that outside the
quadrupole, the transformed coordinates are the same as
the original ones.

This yields the transformed HamiltonianH∗:

H∗ =
V

2
(X2 − Y 2) +

1
2
(P 2

X + P 2
Y ) +

+
1
8
(P 2

X + P 2
Y )2 − V

4
(X2 + Y 2)(P 2

X − P 2
Y )

+
7V 2

24
(X4 + Y 4) − V 2

4
X2Y 2. (8)

We can identify the terms: the first two are the usual linear
ones; the third term is not related to the electric field (it
is small and due to the fact thatx′ 6= px or, equivalently,
tan θ 6= sin θ); the 4th term is also small and arises because
a particle going through the quadrupole at an angle is inside
the quad for slightly longer than one which remains on axis.
See ref. [3] for more complete physical derivation of the
individual terms.

The dominating higher order terms are the last two terms
in eqn. 8. Since there are no derivatives ofV , we can di-
rectly write down the aberrations in the thin-lens limit:

∆px =
−1
f2L

(
7
6
x3 − 1

2
xy2

)
, (9)

with a similar expression for∆py. L andf are the quad-
rupole’s effective length and focal length. The fractional
focal error is found by dividing by the linear part∆0px =
−x/f :

∆fx

f
=

1
fL

(
7
6
x2 − 1

2
y2

)
(10)

for x, and similarly fory.

2.2 Magnetic

In magnetic fields, the canonical momentum~p contains the
vector potential~A so that the time-based Hamiltonian is

Hτ =
1

2m

∣∣∣~p − q ~A
∣∣∣2 (11)

As before, we use the invariantp0 ≡ √
2mHτ to normal-

ize the momenta, convert toz as independent variable, and
expand the square root, keeping terms up to 4th order:

H ≈ −Az +
1
2

[
(px − Ax)2 + (py − Ay)2

]
+

+
1
8

[
(px − Ax)2 + (py − Ay)2

]2
. (12)

To this order, the vector potential for quadrupole strength
k(z) is

Ax = −k′

4
xy2, Ay =

k′

4
x2y (13)

Az = −k

2
(x2 − y2) +

k′′

48
(x4 − y4),

and the Hamiltonian can be written:

H =
1
2

[
k (x2 − y2) − k′′

24
(x4 − y4) + p2

x + p2
y

]
+

+
k′xy

4
(ypx − xpy) +

1
8
(p2

x + p2
y)2. (14)

The generating function which will eliminate derivatives of
k is

G(x, PX , y, PY ) = xPX + yPY +
k′

48
(x4 − y4) +

− k

12
[
(x3 + 3xy2)PX − (3x2y + y3)PY

]
, (15)

which, to the same order yields transformation

x = X +
k

12
(X3 + 3XY 2) (16)

px = PX − k

4
[
(X2 + Y 2)PX − 2XY PY

]
+

k′

12
X3,

and similarly for(y, py). The transformed Hamiltonian is

H∗ =
k

2
(X2 − Y 2) +

1
2
(P 2

X + P 2
Y ) +

+
1
8
(P 2

X + P 2
Y )2 − k

4
(X2 + Y 2)(P 2

X − P 2
Y )

+
k2

12
(X4 + Y 4) +

k2

2
X2Y 2. (17)

Notice the similarity to eqn. 8: in fact all terms are identical
except the last two, which only differ in their coefficients.
Applying the same procedure as in the electrostatic case,
we write down the fractional change in focusing strength:

∆fx

f
=

1
fL

(
1
3
x2 + y2

)
(18)
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3 DISCUSSION

Formulas 10 and 18 are handy for quickly evaluating the
importance of 3rd order aberration. They also show that for
fixed focal length, theonly way of reducing the aberration
is by lengthening the quadrupole; the fraction of aperture
used is not important; for a given effective length, the ab-
solute size of the aperture is not important; the shape of the
ends of the electrode is not important.

Comparing the two formulas, we see that for roundish
beams (x ≈ y), electrostatic and magnetic quads yield
similar aberrations: they are in the ratio of7

6 : 4
3 . For

cases where one transverse dimension is large compared
with the other, and it is important to maintain the quality in
the larger dimension, magnetic quads are better by a fac-
tor of 7

2 . However, for the more common case where it is
more important to maintain the quality of the higher quality
dimension, electrostatic quads win by a factor of 2.

Results from using the above Hamiltonians are in agree-
ment with those from using the commonly used codes
GIOS andCOSY, provided fringe field cards are used. In
both of those codes it is possible to perform a 3rd or-
der calculation with quads which have no fringe fields.
This gives incorrect and actually completely unphysical re-
sults. In essence, omitting the fringe field cards in those
codes describes a situation where the particle traverses non-
Maxwellian fields. For example,GIOS, since it does not
use the scalar value of the potential field, does not obey
conservation of energy when fringe field cards are omitted.

The hard-edge case is correctly described inGIOSby in-
cluding fringe field cards and setting the quadrupole aper-
ture to zero, or, equivalently, setting all the fringe field in-
tegrals to zero. This is a useful approximation since the
results are usefully close to reality and yet one needs not
worry about specifying realistic fringe field integrals. This
does not work inCOSY, since a zero aperture forces an in-
finitesimal integration step-size. A better solution would
be to build in the hard-edge kicks and use these as default
when no fringe field is specified.

The required hard-edge kicks at the entrance to the quad-
rupole are derived directly from equations 7 and 16. The
reason is that we know that the transformed coordinates
(X,PX , Y, PY ) do not experience any singular forces in
the hard-edge limit. Therefore, the kicks for those coor-
dinates are all zero. So the kicks for the untransformed
(x, px, y, py) for the electrostatic case are,

∆x =
V

6
x3

∆px =
−V

2
x2px

∆y =
−V

6
y3 (19)

∆py =
V

2
y2py,

and for the magnetic case are,

∆x =
k

12
(x3 + 3xy2)

∆px =
−k

4
[
(x2 + y2)px − 2xypy

]

∆y =
−k

12
(3x2y + y3) (20)

∆py =
k

4
[
(x2 + y2)py − 2xypx

]
.

The kicks at the exit are, of course, opposite in sign. These
agree with theGIOScase of zero fringe field integrals. See
ref. [1].
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