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Abstract

The increasing dimensions and beam intensities of the new
circular accelerators and colliders impose special demands
on the performance of injection and transverse feedback
systems. Injection errors blow up the emittance of a beam.
The emittance increment with active feedback depends on
the combination of injection error amplitude, tune spread
and extra damping (above the needs for stability) by the
feedback. A description of the transverse feedback system
(TFS) for damping of injection oscillations is given. The
TFS includes a subsystem for damping of transverse in-
stabilities and a pulse subsystem for damping of injection
errors with high damping rate. The optimization of the sub-
system parameters is discussed, and the results obtained for
damping rate of the beam are presented.

1 INTRODUCTION

Transverse feedback system (TFS) is used now to damp not
only coherent transverse instabilities but also injection os-
cillations. As rule, two separate subsystems are used: one
subsystem for damping of instabilities and a pulse subsys-
tem for damping of injection errors. Each subsystem con-
sists of one pick-up (PU), delay, filter and power amplifier
in feedback path, and a kicker (DK) (see Fig. 1).

��
@@
��
@@

�� @@

PU2

PU1

��

filter��
@@
��
@@

τ

@@ DK1

��
@@
��
@@

filter��
@@
��
@@

τ

DK2

�
beam

Figure 1: Damper scheme

The kicker corrects the beam angle, and this correction
depends on the deviation of the beam from the closed orbit
in the PU location. The gain of TFS amplifier is chosen to
provide the needs for an amplitude decrease per revolution.
All parameters of two subsystems are calculated indepen-
dently. Clearly, these estimations can be used as a first ap-
proximation. Indeed, each kicker corrects the beam angle
in accordance with its PU signal. But a change of beam
angle per revolution is determined by two corrections pro-
duced by two kickers. This change depends also on PU
signals due to “feedback via the beam”. Hence, the damp-
ing rate depends on the feedback gains and betatron phase

advances between pick-ups and kickers. Further the theo-
retical description of the feedback with two subsystems is
given.

2 THEORY

2.1 Basic Equation

The arrangement for damping of transverse beam oscilla-
tions is sketched in Fig. 1. A pulse subsystem for damp-
ing of injection errors consists of a pick-up PU1 and a
kicker DK1. Subsystem for transverse instabilities includes
a feedback loop with a pick-up PU2 and a kicker DK2.
Each pick-up measures bunch transverse deviation and the
kicker corrects the beam angle. The kicker should change
the angle of the same bunch that was measured by the PU.
The delayτ in the feedback loop is adjusted to provide such
a synchronization.

Taking into account the results obtained in [1, 2] the
study of the transverse coherent motion bunch dynamic is
started for independent bunches. In this case the bunch
coupling, which occurs due to resistive wall instability, is
neglected and the matrix method becomes suitable for the
beam motion description.

Let the column matrixX̂ [n, s] determine the bunch state
at then-th turn at points of the circumferenceC0. The first
element of this matrix equals the beam deviationx[n, s]
from the closed orbit and the second one isx′[n, s]. Af-
ter a short DK thex′ value of the beam is changed by
∆x′[n, sK ], while deviation remains the same as before the
DK at point s−K . Hence, after DK at points+K , the beam
state is

X̂[n, s+K ] = X̂[n, s−K ] + T̂∆X̂ [n, sK ], (1)

whereT̂ is the2× 2 matrix in whichT21 = 1 and the other
elements are zero. The kick is determined with column ma-
trix ∆X̂ [n, sK ], where the first element equals∆x′[n, sK ]
and the second one has an arbitrary value. It will be as-
sumed further that∆x′[n, sK ] is proportional to the beam
deviationx[n, sP ] in the pick-up:

∆X̂ [n, sK ] =
K√
βPβK

X̂[n, sP ], (2)

whereβP and βK are the transverse betatron amplitude
functions in the PU and DK locations, andK is the gain
of the feedback loop.

Let us introduce the unperturbed revolution matrix̂M0

from pointsP1 of the PU1 location to pointsP1 + C0, the
transfer matrix̂MP from pointsP1 to pointsP2 of the PU2
location, the matrixM̂1 from point sP2 to point sK1 of
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the DK1 location, the matrix̂MK from pointsK1 to point
sK2 of the DK2 location, and the transfer matrix̂M2 from
point sK2 to point sP + C0. By using these matrices it
is not difficult to calculate the transformation of the bunch
state matrixX̂[n, sP1] after the circumference pass with
two angle corrections. For each kick the relations (1) and
(2) should be used. Putting together the terms, the beam
state at the PU1 location at the(n+ 1)-th turn is then

X̂[n+ 1, sP1] = M̂0X̂ [n, sP1] +

+
K1√
βP1βK1

M̂2M̂KT̂ X̂[n, sP1] +

+
K2√
βP2βK2

M̂2T̂ M̂P X̂[n, sP1] . (3)

Eq.(3) fully describes the beam dynamics in an accelerator
with two feedback subsystems considered.

2.2 General Solution

Equation (3) is solved usingZ-transform [3, 4] forX̂[n, s]:

X̂(z) =
∞∑

n=0

X̂[n, s]z−n ;

X̂[n, s] =
∑

k

Res
[
X̂(zk)zn−1

k

]
, (4)

wherezk are the singular points of̂X(z). The motion of
the particles will be stable if|zk| < 1.

The beam motion parameters are fully determined by the
singular pointszk : the number of oscillations per turn
{ReQk} equalsarg(zk)/2π, the damping factorDk equals
|zk|, and the damping timeτD is

T0

τD
= − ln |zk|. (5)

UsingZ–transform for Eq.(3) we get

X̂(z) =
zÎ − M̂−1(z) detM̂(z)

det
(
zÎ − M̂(z)

) zX̂[0, sP1], (6)

where

M̂(z) = M̂0 +
K1√
βP1βK1

M̂2M̂K T̂ +

+
K2√
βP2βK2

M̂2T̂ M̂P . (7)

Î is the unit matrix;X̂[0, sP1] is the initial beam state ma-
trix. The singular pointszk in (6) are found from the equa-
tion [3, 5]:

det
(
zk Î − M̂(zk)

)
=

= z2
k − zkTrM̂(zk) + detM̂(zk) = 0. (8)

For damper system with one correction at every turn (for
example,K2 = 0), Eq. (8) forzk becomes [5]

z2 − (2 cos(2πQ0) + K1 sin(2πQ0 − ψPK)) z +
+1 − K1 sinψPK = 0, (9)

whereQ0 is the number of unperturbed betatron oscilla-
tions per revolution in the transverse plane, andψPK is
the betatron phase advance from the PU1 to the DK1. The
damper with one correction at every turn is known as a
classical feedback system that has been used widely in syn-
chrotrons (see, for example, [6]). It is easy to find the roots
of Eq.(9). They correspond to the eigen frequencies with
the number of oscillations per turn in the neighbourhood
of ReQ0. If |K1| � 1, then in linear approximation the
damping time is

T0

τD
=

1
2
|K1 sinψPK | .

This decrement formula is well known. The best damping
will be for PU and DK locations such that

| sinψPK | = 1 , (10)

i.e. if the phase advanceψPK from PU to DK equals an
odd number ofπ/2 radians.

3 RESULTS

In order to simplify the final expressions, all further re-
sults are shown for a damper system considered (see Fig. 1)
when the relations (10) for the phase advances from PU1
to DK1 and from PU2 and DK2 are fulfilled. In this case
Eq. (8) forzk becomes

z2 − (2 − (K1 + K2)) z cos(2πQ0) +
+1 − (K1 + K2) + K1K2 sin2 ψP = 0 , (11)

whereψP is the phase advance of the betatron oscillation of
the particle on its way from PU1 to PU2. Eq. (11) coincides
with the single correction equation (9) ifK1 or K2 equals
zero. The roots of Eq. (11) are

z1,2 = (1 − K) cos(2πQ0) ±
± i

√(
1 − K

)2
sin2(2πQ0) − ∆2 , (12)

where

K =
1
2
(K1 + K2) ,

∆2 = K
2
cos2 ψP +

1
4

(K1 − K2)
2 sin2 ψP .

The solutions (12) can be used to compute the damp-
ing time and the other beam motion parameters. Thus, the
damping time and the number of oscillations per revolution
are

T0

τD
= −1

2
ln |(1 − K)2 − ∆2| , (13)

Q = Q0 − ∆2 cot(2πQ0)
4π|(1 − K)2 − ∆2| . (14)
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The relation (14) is valid if the deviation ofQ fromQ0

is small (2π|Q−Q0| � 1).
Note, that all basic properties of solutions (12) depend on

the phase advanceψP and the gainsK1, K2. If the phase
advanceψP from PU1 to PU2 equals an integer number
of π radians (ψP = nπ) then we obtain the same expres-
sions as for a classical feedback system. But the damping
rate will be higher because the sum angle correction per
turn is provided by two kickers. It is necessary to empha-
size that for all feedback gains in such systems (ψP = nπ)
there is an additional phase advance per turn for the parti-
cle betatron oscillations. This negative effect does not al-
low to use such damper for a fast correction of injection
errors during few revolutions. Regime of injection angle
suppression per one turn can be realized only if the bunch
injected crosses one of the kickers with zero position error
and the kick value is strongly proportional to the bunch am-
plitude error. This regime is used for all injection schemes
in synchrotrons but the kicker pulse amplitude is generated
in accordance with calculated value by hand and not with
a pick-up signal passed on to the feedback processing and
power electronics which drives the kicker.

If the phase advanceψP from PU1 to PU2 equals an odd
number ofπ/2 radians (ψP = (2n + 1)π/2) then the lo-
cations of pick-ups and kickers are the same as for a fast
feedback system that has been proposed for UNK-I [7].
Note, that forK1 = K2 the solution (12) coincides with
the similar expression for a fast feedback system that has
been discussed in [5]. Only for these PUs and DKs loca-
tions (ψP = π/2) and gains (K1 = K2) the∆ value equals
zero. Hence, in accordance with Eq. (12) and Eq. (14) the
tuneQ does not depend on the gain and the damping rate
will be

T0

τD
= − ln |1 − K | .

If |K | = 1 then injection oscillations are completely can-
celled after the kickers’ pass and this result does not depend
on the betatron phases of a particle crossing PU1, PU2,
DK1 and DK2.

The damper with∆ = 0 can be used for a multiturn
suppression of injection oscillations. The scheme may
be the following. The bunch injected crosses DK1 and
DK2 which correct partially the initial oscillation ampli-
tude. The pulse amplitudes for DKs should be calculated
by hand in accordance with the initial beam state, the kick-
ers’ locations and the degree of the initial oscillation am-
plitude suppression (for example, on 60%; this value de-
pends on a dynamic aperture in an accelerator). Because
two kickers are used with not 100% correction then the
pulse amplitude for DKs generators is lower in compar-
isons with a traditional one kicker injection scheme. Af-
ter kickers’ pass, the feedback is turned on: the pick-ups
PU1 and PU2 measure the residual bunch deviation; these
values are used in the feedback loops for angle corrections
by DK1 and DK2, and so on. This scheme for damping of
injection oscillation can be valid for a large hadron accele-
rators in order to decrease the power generated for injection

kickers.

4 CONCLUSION

The consideration of damping regimes allows one to main-
tain that every turn correction with two subsystems is
preferable. The best conditions for damping are achieved
for those locations of pick-ups and kickers when the phase
advances of the betatron oscillation of the particle on its
way between pick-ups and kickers equal an odd number of
π/2 radians. In this case a special regime can be realized
for suppressing as initial injection amplitude of oscillations
as residual errors and transverse instabilities.
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