
AN EXAMPLE OF A DIGITAL SYNTHESIS APPROACH TO DSP DESIGN:
THE AGS TRANSVERSE DAMPER∗

K.A.Brown, G.Smith, V.Wong
Brookhaven National Laboratory

Upton, NY 11973
1 INTRODUCTION

Using Verilog HDL [1] and Synopsys, the digital signal
processing of the AGS Transverse Damper was designed
and fitted to an Altera Flex 10k FPGA. Using a control
point specification style in the high level description greatly
simplified the design by placing the burden of specifying
the controller on the digital synthesizer.[2] The basic de-
sign and low level simulation are presented as well as the
design methodology.

The purpose of the AGS Transverse Damper [3] [4] is
to control instabilities and injection errors that may arise in
high intensity proton beams being accelerated in the AGS.
The system block diagram for the DSP is shown in Fig-
ure 1. The inputs to the system come from a normalization
unit. This normalization unit takes two signals as input, a
sum of beam position signal plates, and a difference from
the plates. The output of the normalization unit is the dif-
ference divided by the sum. This Quotient is sent to the first
ALU (as Qin[11..0]). Taking differences between position
measurements the system acts as a notch filter.

Controller

DSPout[11..0]

Diff[11..0]

Gain

Init

Init

A - B

Diff[11..0]

Reg[15..0]

Initialize

CosStartSelQuotient

Reg[15..4]

CosStart[11..0]

Bin[11..0]

Qin[11..0]

12x16

12x16

Mux0

Mux1

Reg0

Reg1 Reg2

FIFO 0

FIFO 1

ALU 1

Mult. Unit

CSA Array

C + D

ALU 0

CLA Adder

Select
Gain

Depth1
Depth2

Quotient

Reg2

Depth1 Depth2

(intput)

Figure 1: Block Diagram for AGS Damper DSP

∗Work performed under the auspices of the U.S. Dept. of Energy

The Second ALU computes a running sum of the output
of the first ALU. This then acts to remove any offsets in
the Quotient (and thus this part acts as a high pass filter
- removing any baseline components to the signal). The
depth of the first FIFO (between adder and subtract units)
basically determines the low pass behaviour. The multiplier
serves the purpose of overall loop gain for the system (the
complete system is a real-time feedback system). The FIFO
on the output is used to provide the correct amount of delay
for the system.

The specifications for the design of the system are enu-
merated below . At power up time the FIFO’s are initialized
and filled with zeros.

1. 12 bit system (adder is 16 bit)

2. frequency range for clocks is 3 to 5 MHz.

3. Controls are for Gain, Initialization, Mux Selects, and
external excitation.

4. number systems are all 2’s complement.

23020-7803-4376-X/98/$10.00  1998 IEEE

alpha

beta

alpha1

beta1

alpha2

beta2

alpha

beta

alpha1

beta1

alpha2

beta2

=> used for top level testing

=> used for top level testing

=> used for second level triggering

=> used for second level triggering

=> not used

=> used for lowest level triggering

Figure 2: Multiphase timing for two level hierarchy

The design of the system is a two level hierarchy. So the
triggering of the system is multiple phase. Figure 2 shows
the timing sequences for the system.

2 DISCUSSION

The control point specification style requires a very struc-
tured approach to the design specification.[2] The basic
idea behind this style is the designer never goes into the
details of building or writing specifications for the system
state diagram. They need only specifiy the state tables for
the state diagram and these become the control points, the
inputs and outputs of a black box. This black box the syn-
thesizer constructs based on the state tables. The benefit
of this approach is seen in figure 1. The controller unit is
the black box. The inputs and outputs of the controller unit
are specified, but the specification of the controller itself is
left up to the synthesizer. We then only need to design the
specifications for the individual submodules. To illustrate
this a portion of the verilog specification is shown below:

FA0FA1FA2FA3FA4FA5FA6FA7FA8FA9FAaFAbFAcFAdFAeFAf

b abbbbbbbbbbbbbbb aaaaaaaaaaaaaaa

0123456789101112131415

P0

p0

123456789101112131415
ccccccccccccccc

cin

G0P1G1P2G2P3G3

p1p2p3p4p5p6p7p8p9p10p11p12p13p14p15
g0g1g2g3g4g5g6g7g8g9g10g11g12g13g14g15

G0 P0cout

G0 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0)

P0 = p3 & p2 & p1 & p0

c1 = g0 | (p0 & cin)
c2 = g1 | (p1 & g0) | (p1 & p0 & cin)
c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & cin)
c4 = G0 | (P0 & cin)

Figure 3: Carry Lookahead Adder

module damper(//input parameters);
// input/output declarations put here
...
// control points
...
wire [ws+3:0] Sout; // ALU 1 Output
reg [ws+3:0] Rout; // Reg.0 Output
...
wire [ws-1:0] Dout; // ALU 0 Output
...
// asynchronous assignments
...
// instantiate submodules
mux #(1) TestSel(SEL, 1’b0, Select, testsel);
...
// Control points are passed to the submodules as so:
// this example is a carry lookahead adder, 16 bit.

add_clh16 #(ws+4) Add_1(alpha1,
Dout[0], Dout[1], Dout[2], Dout[3], Dout[4], Dout[5], Dout[6], Dout[7],
Dout[8],Dout[9], Dout[10],Dout[11], Dout[11],Dout[11],Dout[11],Dout[11],
Rout[0], Rout[1], Rout[2], Rout[3], Rout[4], Rout[5], Rout[6], Rout[7],
Rout[8], Rout[9], Rout[10], Rout[11], Rout[12], Rout[13], Rout[14], Rout[15],
Carryin, Cout,
Sout_0, Sout_1, Sout_2, Sout_3, Sout_4, Sout_5, Sout_6, Sout_7, Sout_8,
Sout_9, Sout_a, Sout_b, Sout_c, Sout_d, Sout_e, Sout_f);

// now do the work ...
always @(posedge alpha1 or posedge beta1 or posedge init) begin
...

2.1 Project Submodules

Each block inside figure 1 corresponds to a submodule,
such as the carry lookahead adder whose instantiation is
shown above. It is beyond the scope of this paper to de-
scribe each one. It should suffice to explain the basic or-
ganization of one. For this example we will continue with
the carry lookahead module, which is the basic module for
adders and multipliers (which can be built with trees of
carry save adders and end with a final full adder). This
basic idea can be extended to be used for subtration and
division, although these algorithms are more complicated.

Figure 3 shows the block diagram for a 16 bit carry
lookahead adder. For 16 bit addition a simple ripple carry
adder would not work since it needed more than 100 nsec
to finished a calculation. So going to something faster was
needed. Below portions of the specification are shown. It is
intended only to provide a flavor for how the specificaions
can easily be made to follow the flow of the block diagram.

2303

module add_clh16(clka, // parameters);
//declarations, inputs/outputs, wires, etc.

assign g0 = A[0]&B[0], g1 = A[1]&B[1],
g2 = A[2]&B[2], g3 = A[3]&B[3];

assign g4 = A[4]&B[4], g5 = A[5]&B[5],
g6 = A[6]&B[6], g7 = A[7]&B[7];

...
assign p0 = A[0]ˆB[0], p1 = A[1]ˆB[1],

p2 = A[2]ˆB[2], p3 = A[3]ˆB[3];
...

assign P0 = p3&p2&p1&p0;
assign P1 = p7&p6&p5&p4&P0;

...
assign G0 = g4|(p4&g3)|(p4&p3&g2)|

(p4&p3&p2&g1)|(p4&p3&p2&p1&g0);
assign G1 = g8|(p8&g7)|

(p8&p7&g6)|
(p8&p7&p6&g5)|
(p8&p7&p6&p5&g4)|
(p8&p7&p6&p5&p4&g3)|
(p8&p7&p6&p5&p4&p3&g2)|
(p8&p7&p6&p5&p4&p3&p2&g1)|
(p8&p7&p6&p5&p4&p3&p2&p1&g0);

...
always @ (posedge clka)

begin
sum <= A ˆ B;

carry[0] <= (g0)|((p0)&cin);
carry[1] <= (g1)|((p1)&(g0))|((p1)&(p0)&cin);
carry[2] <= (g2)|((p2)&(g1))|

((p2)&(p1)&(g0))|
((p2)&(p1)&(p0)&cin);

carry[3] <= (g3)|((p3)&(g2))|
((p3)&(p2)&(g1))|
((p3)&(p2)&(p1)&(g0))|
((p3)&(p2)&(p1)&(p0)&cin);

...
end

endmodule

3 CONCLUSIONS

These techniques allowed the design and simulation of a
complex system to be done relatively quickly. The synthe-
sizer is often much better at optimizations than most human
beings, and the use of implicit specifications gives the syn-
thesizer the freedom to build a circuit which fits the design
requirements. Of course the designer must learn how to
define the specifications such that the desired result is ob-
tained. The real benefit of this approach is it allows for the
design process to become more dynamic. It is not difficult
nor very time consuming to alter the design or even change
specifications. It allows the designer to design and simu-
late as realistically as possible the circuits they are going to
build. The amount of time actually spent testing the hard-
ware on the bench is reduced considerably. It certainly has
drawbacks. The engineer now needs to learn a complicated
language and become proficient in that language. The soft-
ware needed to do this is expensive and needs to be con-
figured and maintained. It also requires alot of computing
power and resources in order to run well. For a large pro-
duction company building DSP’s or microprocessors, they
simply cannot exist without software tools such as these,
and necessarily make the investment. For a small lab it is
understandably difficult to consider such an investment.

Results of the simulation are shown in figure 4.

4 ACKNOWLEGEMENTS

This work was done as a class project in a graduate course
on Digital System Synthesis, taught by Prof. David Smith
of the Dept. Computer Science, SUNY at Stony Brook. A
number of students did work in relation to this work. In
particular Karpagavinayagam Ramesh built a Wallace Tree
adder, which was experimented with in this design.

0.0 2000.0 4000.0 6000.0
Time (nsec)

−100.0

−50.0

0.0

50.0

100.0 Input Quotient
DSP Output

Figure 4: Simulation Results

5 REFERENCES

[1] Verilog HDL; A Guide to Digital Design and Synthesis by
Samir Palnitkar, SunSoft Press, 1996.

[2] Dr. D. Smith, SUNY at Stony Brook Dept. Computer Sci-
ence, Class notes from Graduate course on Digital Systems
Synthesis, Fall 1996.

[3] G.A. Smith, T. Roser, R. Witkover, V. Wong, ”Transverse
Beam Dampers for the Brookhaven AGS” AIP Conference
Proceedings 319, Beam Instrumention Workshop, Santa Fe,
NM 1993, pp309-318

[4] G.A.Smith, V. Castillo, T. Roser, W. Van Asselt, R.
Witkover, and V. Wong, ”Digital Transverse Beam Dampers
for the Brookhaven AGS”, Proceedings of the 1995 Parti-
cle Accelerator Conference and International Conference on
High-Energy Accelerators, pp2678-2680

2304

