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Abstract

Transverse wake functions so far reported for the SLAC
DDS have been limited to those caused by uniform offset
of the drive beam in a straight perfectly aligned structure.
The complete description of the betatron oscillations of
wake coupled bunches requires an array of wake
functions, referred to as moments in [1].  Modifications of
these arrays induced by structure misalignments are also
of interest.  In this paper we express the array elements in
terms of a spectral function array.  Examples are given
based upon DDS1.

1. INTRODUCTION

Adolphsen [1] has pointed out that an analysis of
transverse wakefield coupled multibunch motion in a
FODO array requires an array of wake functions instead
of the single function usually defined. Oide [2] has
emphasized the need to compute these wake functions and
also to measure them where possible.  The offset wake
function, which we here designate by W00 instead of the
usual W, gives the angular deviation ∆θ of a witness
bunch trailing a uniformly offset drive beam at a distance
s that has passed through a structure of length Ls via:

     ∆θ = (qw qd Ls/E) W00(s) rd (1.1)

Here qw and qd are the charges of the witness bunch and
drive bunch respectively,  rd the drive bunch offset, and E
the witness bunch energy.  As a result of betatron motion
through the FODO array, however, the drive bunch
motion may be at an angle with respect to the structure
axis.  Choosing the structure center as the fiducial point
from which to define the offset we expect an additional
angular deviation ∆θ proportional to θd, the drive beam
angle, which we express as:

     ∆θ = (qw qd Ls/E) W01(s) (Ls/2) θd,        (1.2)

the total being the sum of  (1.1) and (1.2).  Furthermore,
for sufficiently large Ls one cannot neglect the effect of
the wake induced offset of the witness beam on its
betatron motion.  This leads us to define two more
elements of the wakefield array (called the moment array
in [1]), W10 and W11 via:

     ∆x = -(qw qd Ls/E) W10(s) (Ls/2) rd

               - (qw qd Ls/E) W11(s) (Ls/2)2 θd.        (1.3)

For consistency with our treatment of the drive beam, ∆x
is defined with respect to the center of the structure by
projecting the angle and displacement on emergence from
the structure back to its center, assuming rectilinear
motion.  Expressions for the above array elements based
upon the independent oscillator model, a model in which
W10 and W01 are equal, are given in [1].  Finally we note
that structure misalignments generate offset patterns of
the drive beam different from those discussed above.
Some are of a sufficiently general nature (eg bowing) that
it is useful to define wake functions for them as well (we
designate the bowed case by W02 and W12). The same
general methods which we will apply here apply to more
irregular cases such as those discusssed in [3], and for
each such case there are two functions that need to be
computed, one for ∆θ and one for ∆x.

2. SPECTRAL FUNCTIONS FOR THE WAKE
FUNCTION ARRAY

The extension of the formalism introduced in [4] is
straightforward although, as we shall see, some elements
of the array require spectral function integrals involving
both the sine and cosine of (2πsf/c) instead of merely the
sine as is the case for W00.       The wake function W00 is in
the equivalent circuit theory expressed as:

W (s) = w (s) 00 nm
n m

N

, =
∑

1

(2.1)

where (qw qd Ls/E)wnm is the angular kick experienced by
the witness bunch at cell n due to a unit displacement of
the drive bunch at cell m.  Hence the angular kick
received by the witness due to a set of displacements
d mχ( )  at cell m is:

∆θ =
=

∑q q L E d w mw d s nm
n m

N

1 6 χ( )
, 1

 (2.2)

The various W0x referred to above are determined by
specification of the dimensionless χ(m), with an
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appropriately defined length scale d.  To obtain the
displacement associated with the above we write (2.2)  as:

∆θ(s) = nδθ
n

N

=
∑

1

      (2.3)

Then:
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(2.4)

Comparing with eq. (1.3), we see that

W = w1x nm 1χ χ( ) ( )
,

n m
n m

N

=
∑

1

     (2.5)

where χ1(n) = (2n-N-1)/(N-1).  For the angle wake the
displacement of the drive bunch at cell m is just
(Ls/2)θdχ1(m) so that comparing with eq.  (1.1), (1.2) and
(1.3) we have the general form:

W w n mnm i j
n m

N

ij = χ χ( ) ( )
, =
∑

1

       (2.6)

where i, j equals zero or one, and χ0 equals one .

For a bowed structure the displacement of the drive bunch
at cell m is given by d χ2(m) where d is the span of the
bow and χ2 is given by:

     χ2(m) = [(2n-N-1)/N-1)]2 - 1/3  (2.7)

In parallel with the Wij array we require a wake
impedence array Zij.  Since the wake impedance is simply
the fourier transform of the wake function, we have for
the array:

W s Z f j js c f j dfij ij( ) ( ) exp[ / ( )]= I − −ε π ε2 (2.8)

where ε is a positive infinitesimal quantity, and we write
the impedences schematically as:

Z f f jLf c n m n mij nm i j
n m

N

( ) ( )exp[ / ( )] ( ) ( )
.

= −
=

∑κ π χ χ2
1

(2.9)

where L is the structure period. It will be sufficient for our
purposes to specify the needed properties of κnm.  More
detailed information is given in [4].  The κnm are four
valued analytic functions of f with branch points on the
real axis located at the propagation band edges of both
ends of the manifold.  The cuts connecting the four sheets
are on the real axis wherever either end of the manifold is
propagating.  The segments where both ends of the

manifold are nonpropagating are called gaps.  The integral
in eq. (2.8) is carried out on the physical sheet, a sheet on
which κnm has no singularities except poles and branch
points on the real axis and vanishes at infinity. κnm also
satisfies the symmetry relations:

κ κ κ κnm nm nm mnf f f f( ) ( *) ( ) ( )*= = − = (2.10)

with f, f* and, -f all on the physical sheet.  An important
consequence of these relations is that κ is real on the gaps;
the real part is continuous and the imaginary part changes
sign across the cuts.

To proceed to the spectral function representation it turns
out that one must split Z (and correspondingly W) into
even and odd parts thus:

Z f Lf c n m n m

Z f Lf c n m n m

ij
e

nm
n m

N

i j
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o
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N
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( ) cos[ / ( )] ( ) ( )
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   (2.11)

with:
Z Z jZij ij

e
ij
o= + (2.12)

The expressions for We and Wo are reduced to spectral
function form by making use of the fact in that in general
the precursor term θ(s)W(-s) is negligeably small [4].
Noting that the Fourier transform of We,o(-s) is just ± ,
respectively, that of We,o(s) except that it is evaluated just
above the real axis instead of below, we are led to write:

W s W s W sij
e o

ij
e o

ij
e o, , ,( ) ( ) ( )= −θ m (2.13)

W W Wij ij
e

ij
o= + (2.14)

These lead to integrals over positive frequency cuts and
sums over positive frequency poles as in [4].  We find

W s S

W s S

ij
e

ij
e

ij
o

ij
o

=

=

I
I

θ π

θ π

( ) sin[

( ) cos[

2 Lf / c(n - m)]df

2 Lf / c(n - m)]df 
(2.15)

S f Z f jij
e o

ij
e o, ,( ) Im ( )= − −4 ε= B (2.16)

Pole terms are included in the spectral functions as δ
functions as in [4].

We note that the even wake functions vanish (by
construction) at zero s as expected from causality while
the odd ones do not.  Some sense of the importance of the
precursor term can be obtained by comparing the wake
envelope functions of the even and odd parts at zero s.

552



3. EXAMPLES OF SPECTRAL FUNCTION AND
WAKE FUNCTION ARRAY ELEMENTS

 We conclude by presenting a number of examples of the
spectral function array elements and their associated wake
envelope functions.  These are useful for assessing the
relative importance of the various components.  It should
be recognized, however, that the envelope functions
cannot be combined linearly.
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Fig 1: Even spectral function, Wc
01 associated with the sine

wake function, and its integral for a matched HOM
coupler with a beam transiting a DDS at an angle
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Fig 2:  Sine wake envelope function resulting from the
spectral function of fig 1.

14 14.5 15 15.5 16

Freq. (GHz)

-30

-20

-10

0

10

20

30

40

50

S
pe

ct
ra

l F
n 

(V
/p

C
/m

m
/m

/G
H

z)

Fig 3: Even spectral function, Wc
01 for matched HOM

coupler with a bowed DDS.

For any given situation the wake functions themselves
must be linearly combined and the result put in envelope

form if desired.  In general, it is our experience that the
cosine wake terms are far smaller than the sine wake
terms, and they are especially small as s vanishes,
consistent with the expectation that precursor terms are
small.  Since W01 and W10 differ only in the sign of these
otherwise equal cosine terms, they are very nearly equal.

Illustrated in fig 1. is the spectral function corresponding
to Z01 for a beam travelling through the DDS at an angle.
The features of the W00 are evident, namely under-coupled
modes in the upper frequency end.
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Fig 4: Sine wake envelope function for a bowed DDS
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Fig 5: Sine wake envelope function corresponding to S11

for a beam travelling at an angle through the DDS
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