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Abstract

A generalized form is considered in a source-free
region for the magnetic scalar potential in focusing planar
undulators and insertion devices. A number of particular
cases is outlined: periodic quadrupole and sextupole
focusing, combined-function nonlinear wigglers, twisted
undulator, alternating longitudinal field focusing system,
an adjustable phase insertion device. A special attention is
paid to quadrupole type intrinsic fields including strong
periodic focusing. The generalised formalism can be used
in particle tracing codes or 3D codes for free electron
lasers simulation.

1 INTRODUCTION

Free electron lasers (FELs), synchrotron radiation
sources, microwave sources use a great variety of
periodic magnetic systems. The development of the
shortest wavelength high power FELs [1] requires a long
undulator with strong focusing to achieve high gain.
Therefore the fields providing intrinsic focusing should
be considered in more details. Besides, some novel
structure of insertion devices (ID) such as twisted
undulator [2] need in specific description of undulator
fields in paraxial region.

2 FIELDS IN CARTESIAN FRAME FOR PERIODIC
SYSTEMS

There is a well known formula for the magnetic scalar
potential in the planar wiggler [3] with a periodic
intrinsic focusing of sextupole type. However this
formula does not include the real case of intrinsic
focusing with a periodic transverse field gradient in
planar wigglers (undulators).

Let us consider a magnetostatic system with space

period l pw wk= 2 /  and adiabatic tapering along the

longitudinal axis OZ. The magnetic field B (B = -Ñy )

can be expanded as a Fourier series in a free-space
(interaction) region:

( )y y= å n
inkwzx y e, .

For rectangular gap configuration the analytic solutions

of Helmholtz equation D^ - =y yn w nn k2 2 0  can be

derived in the following form:
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where n is the field harmonic number; jn is the initial

space shift for the n-th harmonic, An
m( ) , mnx

m( ) , mny
m( ) , kw

are slowly varying functions of the longitudinal

coordinate z: { }d

dz
A k kn

m
nx y
m

w wln , ,( )
,

( )
m << ; An

m( )

coefficients (m¹4) define on-axis field Fourier-
amplitudes or field gradient Fourier-amplitudes (m=4),

and mnx
m( ) , mny

m( )  eigenvalues describe the field shape in

transverse plane for each Fourier-harmonic.

2.1 Particular cases

Herewith five particular cases i)¸ ÚÚ) are considered.

i)   An
( ) ,1 0¹  A mn

m( ) ,= ¹0 1

     We deal with Scharlemann`s expression (see ref. [3])
for the magnetic scalar potential in the planar undulator
with a horizontal wiggle plane. The first term in (1) being
expanded in powers of x,y gives the series of periodic
fields with an even symmetry with respect to YOZ plane:
dipole, sextupole, decapole, etc.
We can consider two subclasses.

a) A conventional wiggler (undulator) with
sextupole type (`natural`) focusing (see ref. [3]) at

mnx
m( )2 > 0, mny

m( )2 >0.

b) If mny
m( )2 (z) periodically changes its sign along

the undulator (mny
m( )2 < 0, mnx

m( )2 > 0 and vice versa) we

can derive an alternating sextupole strong focusing that
was investigated in matrix formalism in [4]. K-V
equations [5] describe beam envelope behaviour as
Mathieu-Hill equations and allow to treat such focusing in
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a source-free region for undulators also. Particle tracing
codes can solve the beam transport problem in such
undulators taking into account nonlinear effects and the
measured magnetic field data (see [6,7] for example).

ii) An
( ) ,2 0¹  A mn

m( ) , .= ¹0 2

     The second term in (1) describes the undulator fields
with the sextupole type periodic focusing and the vertical
(YOZ) wiggle plane. So this case can be obtained from
the previous (i) case by means of replacement: x « y.

iii)  A An n nx ny
( ( ) ( ) ( ), ,3) 4 2 10 0 0= = Þ Þm m

at A iA constn n
( ) ( ) .1 2 0= - = ¹

     This case approximates the fields of a well known
helical undulator in Cartesian frame. This form is more
suitable for a permanent magnet undulator having only
two dipoles over lw / 2  length and angular shift p/2

between them in the transverse plane.

iÚÚ)  An
(3) ¹ 0 .

a) A mn
m( ) , .= ¹0 3

    We see that the longitudinal magnetic field is not zero
on the OZ axis. The transverse magnetic field
components are equal to zero on the OZ axis. The
transverse field components vanish at n = 0  and
r

r

B r^ ^~  near the axis. This case describes alternating

longitudinal field (solenoidal) focusing system. Such
systems are very compact and effective for electron beam
focusing in travelling wave tubes (TWT) and backward
wave oscillator (BWO) tubes.

b) A B G
nk z

A An r n
w o

n n
( ) ( ) ( )cos , , ,1 2 42
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    This case appropriates to the adjustable phase insertion
device (APID, see ref. [8]). Here zo  denotes the space

shift along the OZ axis between two parallel magnet rows
with a constant gap and other notations B Gr n,  are the

same as in the ref. [8]. It can be shown that the focusing
properties of APID are independent on the undulator
strength (i.e. zo  value for APID) in contrary to the

adjustable gap insertion devices (AGID) for ultra
relativistic electron beams.

2.1.1 Field component having odd symmetry in
transverse plane

ÚÚ)  An
( )4 ¹ 0 , An

( .3) 0=

Here An
( )4 = Q zn ( )  is Fourier-amplitude of  the field

gradient for the n-th field harmonic.

     The last term in (1) describes the intrinsic periodic
focusing fields with odd symmetry with respect to the
longitudinal OZ axis. Unlike the previous cases (i, ii )
corresponding fields can be regarded as quadrupole,
octupole, dodecapole, etc. series of fields. Besides, an

interchange of signs of m nx
( )4 2

 and m ny
( )4 2

 corresponds no

longer to a conventional strong focusing. The alternating

gradient focusing is caused by An
( )4 = Q zn ( )  variation

along the undulator. It can be provided by means of both
external quadrupoles and special undulator schemes with
intrinsic quadrupole focusing.
      The combination of the first and the last term in (1)
can describe the so-called quadrupole-sextupole wiggler
(see ref. [6]) in which, as the name suggests, there are
superposed quadrupole and sextupole fields. Such
multipole combination produces nonlinear damping effect
with negligible energy loss for fluctuating synchrotron
radiation in storage rings. Another combined-function
nonlinear wigglers (for example, dipole-octupole
magnets) produce a large additional energy loss [6].
     Let us consider the contribution of y q  to a total scalar

potential y  from the last term in (1):
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We can outline three following subclasses.

a)An
( )4 ¹ 0 , An

( )4 =0 for n¹0, : .j yo q oQ xy= =0

This is a conventional quadrupole focusing with constant
gradient. For intrinsic quadrupole focusing  Qo is the
gradient averaged over undulator period.

b) A0
4( ) ¹ 0 , An

( )4 =0 for n¹1.

This is the case of an alternating gradient with quadrupole
lenses placed between the poles (j 1 =0, see also ref. [4])

or with canted poles having the same tilt (j p1 2= / ).

c) A0
4( ) ¹ 0 , A0

4( ) ¹ 0 , An
( )4 =0 for n¹0 and n¹2.

This case takes place when the local gradient
Q z B xy( ) /= -¶ ¶  is a periodic function with period

lw / 2 . As it follows from direct measurements [9-12]

the undulators with canted poles [11,12], side magnets [9]
and C-shape poles [10] have a such property. It can be
assumed that for some other planar undulator schemes
(for example, with trapezoidal blocks or offset pole
pieces) we have Q2¹0 as well.

Expression (2) describes intrinsic quadrupole focusing and

contains Qo , Q2 , m2x , j2  parameters in addition to the

conventional undulator parameters (period, amplitude,
etc.). These additional parameters can be defined by
means of direct measurements or 3D magnetostatic fields
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calculation. To take into account Q2 -effect on beam size,

phase synchronism detuning  (see [9,10]) we can not
apply K-V equations and should use non-averaging and
non-linearized particle tracing calculations (e.g. [7]). We
expect this effect can appear as a coupling between the
vertical and horizontal motions due to the nonlinear cross
terms in the undulator focusing strengths expanded as a
Taylor series. It would be similar to the effect noticed for
the equal focusing undulators with the sextupole type
focusing [9,13].

3 TWISTER UNDULATOR FIELDS

The geometry [2,14] looks like helical transformation
with period  lt applied to an original linear undulator
structure having period  lw and provides a combination of
fast and slow oscillations of the electron beam. In a
source-free region the fields can be represented in terms
of y(r,j, z)=ReSR(r)F(j)Z(z). Since the longitudinal
structure combines two periods lt   and lw , we use
nht+mhw  as a separation constant. It gives the followng
solution:

y j
j

( , , ) Re
( ( ))

exp( ( ( ) )), ,

,
r z

A C I r nk mh

i l nk mh zl m n

l n m l t w

t w
=
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- +

æ

è
ç

ö

ø
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To define the constants Al, Cm,n the following transverse
fields we imply at r=0 :
Br=(Bwcoskwz+Bt)sin(j+ktz)
Bj=(Bwcoskwz+Bt)cos(j+ktz),
where Bw and Bt are the amplitudes of the untwisted and
helical undulator fields respectively. This form follows
from the expression for on-axis undulator field derived
from that for planar undulator under twisting
transformation [14]:

Bx=(Bwcoskwz+Bt)sin(ktz)

By=(Bwcoskwz+Bt)cos(ktz).

Under these assumptions one can derive:

y j
j
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