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Abstract

The simple theory of the weak head–tail instability does not
exhibit a threshold current. Experimentally, the instability
does not always appear, due to the readily available stabi-
lizing mechanism known as Landau damping. Here we ex-
tend the theory to include Landau damping that arises from
a quadratic dependence of betatron tune on amplitude, as
occurs when octupoles are present in the synchrotron lat-
tice. The binomial density distribution, which is appro-
priate for proton beams, is chosen as the steady–state for
both the transverse and longitudinal phase–space distribu-
tions. Using Sacherer’s formalism we look for solutions
by expanding the perturbation in a set of basis functions.
The method involves evaluating the dispersion integral, and
finding the eigen–values of the interaction matrix. The re-
sults can be represented in a “stability diagram” with the
standard interpretation but with the axes representing the
real and imaginary parts of the eigen–values. As a numer-
ical example, we determine the octupole strength needed
to damp the reported high–order modes observed[1] in the
CERN PS for bunches with “LHC characteristics”.

1 INTRODUCTION

With ever increasing intensity, Landau damping of insta-
bilities by the frequency spread produced by the residual
nonlinearity in the transverse restoring force cannot be as-
sumed to be sufficient, especially at high energies where
the image charge force becomes negligible. This is clearly
demonstrated by the observation of the high–order modes
l = 5, 6, and 7 at the CERN PS [1].

The simple theory of the instability is formulated under
the assumption that there is no intrinsic spread in the in-
coherent oscillation frequencies. With an intrinsic spread,
coherent modes can exist only above a certain threshold
and their frequencies are called Landau frequencies. We
have extended the theory of Sacherer[2] to include Landau
damping by a betatron frequency spread. We have derived
an integral equation[3] which contains a dispersion integral
due to the amplitude dependent betatron frequency; we call
it the dispersive integral equation. The equation reduces
to Sacherer’s integral equation when there is no frequency
spread, as expected.

In this report, we will consider a specific case in which
the amplitude dependence is quadratic, as occurs when oc-
tupoles are present in the ring. The amplitude distributions
of the transverse and longitudinal steady–state distributions
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are chosen to be the binomial distribution because its pro-
file is sharp, which is appropriate for proton beams.

2 THE DISPERSION RELATION

The dispersive integral equation below is obtained from the
linearized Vlasov equation where we have neglected trans-
verse and longitudinal mode coupling and assumed that the
transverse wake force does not affect the synchrotron mo-
tion,

Rl(r)

f(Λ) + i g(Λ)
= W (r)

∫ ∞

0

r′ dr′Rl(r
′)Gl(r, r

′), (1)

whereW (r) is the weight function,Rl(r) the longitudinal
radial density function of thelth head–tail mode,Gl(r, r′)
the kernel function of the integral, andΛ the Landau mode
frequency. The beam transfer response function (BTRF)
f(Λ) + i g(Λ) is obtained by evaluating the dispersion in-
tegral,

f(Λ) + ig(Λ) =
1
2

∫ ∞

0

−f ′
0(q)q

2 dq

Λ − ωβ(q) − lωs
, (2)

wheref0(q) is the binomial transverse amplitude(q) dis-
tribution andωs is the synchrotron frequency.

We followed Sacherer’s formalism in transforming the
integral equation into a set of linear equations by expanding
Rl(r) in terms of an appropriate set of basis functions with
W (r) as the weight,[

1
f(Λ) + i g(Λ)

]
ak =

∑
k′

Mkk′ak′ , (3)

where k and k′ are the index of the basis function
(fk(r), k = 0, 1, 2, 3, . . .), andak′ the coefficients of the
expansion. The matrix elementsMkk′ are given by a sum-
mation of the total transverse impedanceZ1(ω′) times the
frequency spectrahlk(ω′) andhlk′(ω′) of the phase–space
density functions formed by thekth andk′th basis func-
tions times the phase density distribution,

Mkk′ = −i
πNr0c

γT 2
0 ωβ

∑
p

Z1(ω′)hlk(ω′)hlk′(ω′), (4)

whereN is the number of particles in the bunch,r0 the
classical proton (electron) radius,T0 the revolution period,
ωβ the small amplitude betatron frequency,γ andc have
the usual relativistic definitions. The summation is over the
side bands of the revolution frequencyω0; ω′ = pω0 +
Λ. For a nontrivial solution to exist, the reciprocal of the
BTRF must satisfy

det

[(
1

f(Λ) + i g(Λ)

)
I −M

]
= 0, (5)
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whereI is the identify matrix andM is the interaction ma-
trix defined above. This is true if and only if

1
f(Λ) + i g(Λ)

= λn, n = 0, 1, 2, 3 . . . , (6)

whereλn is thenth eigen–value ofM. Thus, there are an
infinite set of dispersion relations for each model, one for
each eigen–value.

In the absence of an intrinsic frequency spread, the dis-
persion relation Eqn. 6 reduces to an expression which can
be rearranged to give the Sacherer frequenciesΩ of thelth
mode,

Ω = λn + lωs + ωβ . (7)

The result above is obtained by evaluating the BTRF for
the special case of no frequency frequency spread [3], that
is, ωβ(q) = ωβ .

The dispersion relation Eqn. 6 has very limited usage.
According to the standard interpretation of the dispersion
relation, and using the definition of the Sacherer frequency
(Eqn. 7), we can construct a complex map of the Landau
frequency plane(Λ) into the Sacherer frequency plane(Ω)
from the BTRF as follows,

1

f(Λ) + i g(Λ)
= Ω − lωs − ωβ . (8)

This complex map allows one to obtain the stability bound-
ary diagram in the familiar Sacherer plane by mapping con-
tour lines of constant growth rates. The Landau damped
(stable) region is free of contour lines and bounded by the
line of zero growth and the horizontal axis. See Fig. 1. An
unstable mode is Landau damped if its Sacherer frequency
lies in this region. Ideally, one wants to obtain the stability
diagram in the transverse impedanceZ1(ω) plane. How-
ever, it must be pointed out that the transverse impedance
cannot be, at best, practically obtained from the Sacherer
frequency.

3 THE BEAM TRANSFER RESPONSE
FUNCTION

As an example, we will obtain the BTRF of a binomial am-
plitude distribution with quadratic amplitude dependent be-
tatron frequency. The quadratic dependence can be written
as

ωβ(q) = ωβ + Sq2/q̂2, (9)

where0 ≤ q ≤ q̂, q̂ is the maximum betatron amplitude,
andS the width of the frequency spread. We use the bino-
mial distribution of the form,

f0(q) =
α(1 + α)

2q̂2

(
1 − q2

q̂2

)α

, (10)

whereα is a parameter that determines the profile of the
distribution. We cannot evaluate the dispersion integral for
an unspecified value ofα. We choose a specific value of
4 so we can use the result later. Substituting the binomial

distribution and the quadratic dependence into the disper-
sion integral (Eqn. 2) and performing the integration, we
obtain the BTRF,

f(Λ) =
20

S2

(
∆Λ

3
− 3S

4
+

3S2 − 3S∆Λ + ∆Λ2

2S

+
(∆Λ − S)3

S2
+

∆Λ(∆Λ − S)3 log |S − ∆Λ|
S3

+
(S − ∆Λ)3∆Λ log |∆Λ|

S3

)
,

g(Λ) =
20π

S2

(
∆Λ(∆Λ − S)3

S3

)
, (11)

where∆Λ = Λ − ωβ − lωs.

4 THE HEAD–TAIL MODE SPECTRA

The mode spectra are required in the evaluation of the ma-
trix elements ofM. In this section, we will outline the
steps involved in obtaining the mode spectrahlk(ω) of the
longitudinal binomial amplitude distribution from the basis
functionsfk(r). The normalized longitudinal distribution
g0(r) is

g0(r) =
(1 + α)

πr̂2

(
1 − r2

r̂2

)α

, (12)

wherer̂ is the maximum synchrotron amplitude, and the
orthogonality condition that defines the basis functions is∫ r̂

0

r dr g0(r)fk(r)fk′(r) = δkk′ , (13)

whereδkk′ is the Kroneker delta function. Looking up a
standard list of weighted orthonormal functions we found
the correct set and, after the normalization, we can write
the basis functions as

fk(r) =

√
2π(1 + α + 2k + l)Γ(1 + α + k + l) k!

(1 + α)Γ(1 + k + l)Γ(1 + α + k)

×
(

r

r̂

)l

P l,α
k

(
1 − 2

r2

r̂2

)
, (14)

whereΓ(x) is the gamma function andP l,α
k (x) is the Ja-

cobbi polynomial of orderk with indicesl andα. From
the basis functions, we formed the corresponding phase–
space density functions and took their Fourier transforms
to obtain the spectra,

hlk(ω) = 2α

√
2

π

(1 + α)(1 + α + 2k + l)

Γ(1 + k + l) k!
(15)

×
√

Γ(1 + α + k + l)Γ(1 + α + k)

× J1+α+2k+l

(
ω − ωξ

c
r̂
)/(

ω − ωξ

c
r̂
)1+α

,

for α > −1, and whereωξ is the chromatic frequency shift,
andJn(x) thenth order Bessel function of the first kind.

5 GROWTH RATES AND FREQUENCY SHIFTS
OF THE “LHC” BUNCH

In this section, we will calculate, assuming the longitudi-
nal amplitude distribution is binomial, and attempt to com-
pare with the experimental observation. The approximate
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l 2 3 4 5 6 7 8 10
k -120 -45 -7 5 5.6 3.6 2.1 0.7
∆f -160 -109 -67 -36 -18 -10 -6 -27

Table 1: Transverse head–tail frequency shifts and growth
rates of the “LHC ” bunch.

eigen–values can be found easily, if the cross–coupling
terms, which are generally two orders of magnitude smaller
than the diagonal terms, are neglected. This gives a simple
expression for the frequencies,

Ωn = Mnn + lωs + ωβ . (16)

The resistive wall impedance was identified as respon-
sible. Using the beam parameters in [1] and also the
impedance formula, we calculatedΩ0 for modes 2 to 10.
For each mode, only the frequency with indexn=0 was cal-
culated, since this index value gives the largest frequency
shift (∆f Hz) and growth rate (k s−1), roughly two or-
ders of magnitude larger than that of the next index value
(n=1). We evaluated the matrix elementM00 by broad–
band approximating the summation with an integral, which
is a good approximation since the resistive wall impedance
is a smooth function without sharp peaks.

The results are shown in Table 1. We can see that modes
5,6, and 7 are unstable and they have the largest growth
rates. The rise times of these three modes range from 200–
285 ms, which are close to the observed[1] rise times 100–
200 ms. However, we are not able to compare the fre-
quency shifts with measurements as there are no data avail-
able. When we compared with the rise times obtained using
the approximate mode spectra in Ref. [1], they differ by as
much as a factor of two. This shows that the approximate
spectra are inaccurate and the exact spectrahlk(ω) should
be used instead if a bunch has the binomial profile.

6 LANDAU DAMPING BY OCTUPOLES

Figure 1: Contour lines and stability boundary diagram for
the “LHC” bunch.

In this section, we will estimate the upper bound of the
octupole strength required to Landau damp the instability
as observed in [1]. Let us assume that the transverse ampli-
tude distribution of the bunch is binomial with anα value of
4. This value gives the binomial distribution a profile that is
similar to the Gaussian distribution but without the infinite
tail. It is appropriate for bunches which do not have very
sharp parabolic profiles. With octupoles installed in a ring,
the time averaged betatron frequency depends quadratically
on the amplitude. The BTRF for these conditions was eval-
uated as an example in Sec. 3 (Eqn. 11). The map can be
obtained by taking the reciprocal of Eqn. 11 and equating
it to the left hand side of Eqn. 6.

Given a frequency spreadS, the contour lines are ob-
tained by plotting the complex values of the map for differ-
ent constant values of the growth rate [Im(Λ)], as the fre-
quency shift [Re(∆Λ)] is scanned from−∞ to ∞. An up-
per bound on the octupole strength can be obtained from a
minimum frequency spread required to put the point whose
coordinates comprises the largest growth rate and coherent
frequency shift in the stable area. As reported, the largest
growth rate was 10 s−1. The frequency shifts of the unsta-
ble modes are not available. Fortunately, that of the dipole
mode (l=0) is given [1] and it is the upper limit, which
would give a conservative estimate. Guided by the well–
known rule of thumb for Landau damping, we found that
a frequency spread of 1000 Hz is sufficient. Fig. 1 shows
the location of the point and well inside the boundary. This
frequency spread requires an integrated octupole strength
of 63 m−3.

7 CONCLUSIONS

We have derived the dispersion relations for the weak trans-
verse head–tail modes of the binomial amplitude distribu-
tion, which also defines a complex map. When there is
no intrinsic frequency spread, it reduces to an expression
for the mode frequencies in terms of the eigen–values of
the interaction. We have obtained an analytic expression
for the mode spectra and calculated an example BTRF. As
an application, we calculated the growth rates and coher-
ent frequency shifts of the “LHC” bunch and estimated the
octupole strength to promote Landau damping.
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