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Abstract

There are several papers concerning shielding of coher-
ent synchrotron radiation (CSR) emitted by a Gaussian
line charge on a circular orbit centered between two par-
allel conducting plates. Previous asymptotic analyses in
the frequency domain show that shielded steady-state CSR
mainly arises from harmonics in the bunch frequency ex-
ceeding the threshold harmonic for satisfying the bound-
ary conditions at the plates. In this paper we extend the
frequency-domainanalysis into the regime of strong shield-
ing, in which the threshold harmonic exceeds the character-
istic frequency of the bunch. The result is then compared to
the shielded steady-state CSR power obtained using image
charges.

1 INTRODUCTION

There have been several studies [1, 2, 3] concerning shield-
ing of coherent synchrotron radiation (CSR) emitted by a
Gaussian line charge on a circular orbit centered between
two parallel conducting plates. Nodvick and Saxon [1] de-
veloped an exact expression for the power radiated by a
bunch in steady state, written as a summation over all har-
monics of the radiated power. Using the asymptotic be-
havior of the Bessel functions in these radiated-power har-
monics, Kheifets and Zotter [2] recently developed a sim-
ple expression for the shielded CSR power as a function of
beam and machine parameters. In an alternative derivation,
Murphy, Krinsky, and Gluckstern [3] obtain the CSR power
by including image charges from the parallel plates to cal-
culate the CSR-induced steady-state longitudinal electric
force across the bunch.

According to Ref. [2], shielded CSR is important for har-
monic numbersn in the rangenth < n < nc, where

nth =
√

2/3(πρ/h)3/2, nc = ρ/σs. (1)

Here,ρ andh denote the radius of the circular orbit and the
plate separation, respectively,σs denotes the root-mean-
square bunch length,nth is the threshold harmonic for sat-
isfying the boundary conditions at the plates, andnc is the
characteristic harmonic number below which the radiation
will be coherent. However, according to Fig. 9 of Ref. [3],
which compares the shielded CSR power calculated using
the image charge method with that given in Ref. [2], there
is an evident discrepancy. Fornth > nc, i.e., for strong
shielding, the result given by Ref. [2] underestimates the
shielded CSR power considerably.

In this paper, we modify the analysis of Ref. [2] us-
ing power harmonics in Ref. [1] to obtain a result for the

steady-state CSR power in agreement with the exact result
for nth > nc. We show that for this parameter range the
shielded CSR power is not always negligibly small.

2 PREVIOUS RESULTS

We consider a line-charge bunch moving on a circular orbit
of radiusρ with angular frequencyω0 in the center plane
between two perfectly conducting plates atz = ±h/2. Ac-
cording to Kheifets and Zotter [2], based on the work of
Nodvick and Saxon, the power radiated by a single rela-
tivistic electron in thenth harmonic is

Pn =
4πne2ω0

h

p<nh/πρ∑
p=1,3

[
J

′2
n (γpρ) +

g2
p

n2 − g2
p

J2
n(γpρ)

]

(2)

whereγpρ =
√

n2 − g2
p with gp = pπρ/h, andp is the

index of eigenfunctions satisfying the boundary condition
at the plates. Only propagating modes, i.e., those satisfying
n > gp, contribute significantly to the powerPn; therefore,
whenπρ/h � 1 it suffices to use asymptotic expressions
of the Bessel functions for largen:

Jn(γpρ) ' 1√
3π

(
gp

n
)K1/3(g3

p/3n2),

J ′
n(γpρ) ' 1√

3π
(
gp

n
)2K2/3(g3

p/3n2).
(3)

The modified Bessel functions are appreciable only when
n > g

3/2
p � gp. Consequently, forω0 = c/ρ, the power

harmonic ofN electrons reduces to

Pn =
4N2e2c

3πρh

p<nh/πρ∑
p=1,3

A(n, p) (4)

where

A(n, p) ≡ g4
p

n3

[
K2

1/3

(
g3

p

3n2

)
+ K2

2/3

(
g3

p

3n2

)]
. (5)

The CSR power generated by a relativistic Gaussian line
charge withN electrons is

Pcoh =
∞∑

n=0

Pne−(nσs/ρ)2 . (6)

In Ref. [2], it is assumed that the CSR power comprises
mainly harmonicsPn for which n > nth. Changing the
summation overp into integration gives

Pn =
C0N

2e2c

ρ
n1/3 (nth < n < nc) (7)

16440-7803-4376-X/98/$10.00  1998 IEEE



whereC0 = 2C/31/3π2, with C ' 3.68. The total CSR
power is then obtained by replacing the summation overn
by an integration overx = (nσs/ρ)2,

Pcoh ≈ C0N
2e2c

2ρ
(

ρ

σs
)4/3F (xth),

F (xth) =
∫ xc

xth

dxx−1/3e−x ≈ Γ(2/3, xth)
(8)

with xth = (nth/nc)2, xc = 4π, andΓ(ν, x) denoting an
incomplete gamma function.

The free space CSR power is obtained by settingxth to
0,

P
(0)
coh =

N2e2c

(ρ2σ4
s)1/3

F (0)C0

2
(9)

whereF (0)C0/2 ≈ 0.35. This result agrees with that ob-
tained by Schiff [4],

P
(0)
coh =

N2e2c

(ρ2σ4
s)1/3

31/6[Γ(2/3)]2

2π
(10)

in that31/6[Γ(2/3)]2/2π ≈ 0.35. The formalism of Eq. (8)
therefore sets the ratio of shielded CSR to that of free space
as

Pcoh/P
(0)
coh = F (xth)/Γ(2/3). (11)

3 MODIFIED ANALYSIS

We will now show that the results of the previous section
are applicable only for weak shielding, namely,nth � nc,
due to the replacement of the sum overp by an integral and
the discarding of the contribution of harmonicsn < nth.
We do so by first showing that, for eachpth mode satisfying
the boundary conditions at the plates, there is a threshold
harmonicn

(p)
th = p3/2nth, wherenth given in Eq. (1) is

the threshold harmonic forp = 1, i.e.,nth ≡ n
(p=1)
th . The

pth mode contributes significantly to the CSR power only
whenn

(p)
th < nc, or p < (nc/nth)2/3. Using integration

overp on the interval[0,∞) to derive Eq. (7) from Eq. (4)
is valid only if nth � nc, which is the quasi-free-space,
weak-shielding situation. However, if the parameters do
not satisfynth � nc, only the first fewp modes contribute
to Pcoh in Eq. (6). In particular, whennth > nc, only the
p = 1 mode contributes significantly toPcoh, and in this
case Eq. (8) is manifestly inaccurate.

We begin our analysis by showing that it is permissible to
exchange the order of the summations overp andn, which
then allows an explicit calculation of the contribution of the
pth mode to the CSR power. The asymptotic behaviors of
the modified Bessel functions are

Kν(z) ∼



√

π

2z
e−z (largez)

1
2
Γ[ν](z/2)−ν (z → 0, Reν 6= 0)

. (12)

Numerically one finds that the asymptotic behavior of
Kν(z) for large z is good to 10% atz = 1/2 for ν =

1/3, 2/3. Therefore, the modified Bessel functions in
Eq. (5) are exponentially small wheng3

p/3n2 � 1/2 or

n � n
(p)
th , and their contributions toPn are then negligi-

ble. This typifies the nonpropagating modes, i.e., those for
which p ≥ nh/πρ, becauseg3

p/3n2 ≥ n/3 � 1 for large
n. Consequently one can extend the summation overp to
infinity in Eq. (4) without sacrificing accuracy, and there-
fore exchange the orders of summation for indicesp andn
in combining Eqs. (4) and (6) to obtain

Pcoh =
4N2e2c

3πρh

∞∑
p=1,3

I(p), (13)

with I(p) denoting the contribution of thepth mode to the
coherent radiated power:

I(p) =
∞∑

n=0

A(n, p)e−(n/nc)
2
. (14)

To obtain a closed-form expression forPcoh, we first cal-
culate the asymptotic form ofI(p). After defining

x
(p)
th = (n(p)

th /nc)2, x = (n/nc)2, (15)

we note that, providednc � 1 andn
(p)
th � 1, the summa-

tion overn in Eq. (14) can be replaced by an integral:

I(p) ' 3gp

4

∫ ∞

0

f (p)(x)dx, (16)

with

f (p)(x) =

[
K2

1/3

(
x

(p)
th

2x

)
+ K2

2/3

(
x

(p)
th

2x

)]
x

(p)
th e−x

x2
.

(17)
Applying the asymptotic form of the modified Bessel func-
tion in Eq. (12) for the frequency rangen < n

(p)
th gives

f (p)(x) ' f
(p)
0 (x) =

2π

x
exp

(
−x

(p)
th

x
− x

)
(x < x

(p)
th ).

(18)
HenceI(p) in Eq. (16) is

I(p) ' I0(p) + ∆I(p);

I0(p) =
3gp

4

∫ ∞

0

f
(p)
0 (x) dx = 3πgpK0

(
2
√

x
(p)
th

)
,

∆I(p) =
3gp

4

∫ ∞

x
(p)
th

[f (p)(x) − f
(p)
0 (x)] dx.

(19)
The relative error of estimatingI(p) usingI0(p) is plot-

ted in Fig. 1 as a function ofx(p)
th . The plot shows that when

x
(p)
th ≥ 1, ∆I(p)/I0(p) is negligibly small, and in this limit

I(p) ' I0(p). This circumstance arises because, in the in-
tegrand of∆I(p), the error introduced by using the asymp-
totic form of Kµ(z) is suppressed by a factore−x for x ≥
x

(p)
th > 1. Moreover, whenx(p)

th > 1, we can use Eq. (12) to
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expressK0

(
2
√

x
(p)
th

)
of Eq. (19) in its asymptotic form,

after which we findI0(p) ∝ p1/4 exp[−2p3/2(nth/nc)].
This expression shows clearly that, whennth > nc, I0(p)
rapidly decreases with increasingp, so in this strong-
shielding limit, the CSR power

Pcoh ' 4N2e2c

3πρh

∞∑
p=1,3

I0(p) (nth > nc) (20)

is dominated byp = 1 mode, and its ratio to the free-space
steady-state CSR power in Eq. (10) gives

Pcoh/P
(0)
coh ' C0(nth/nc)5/6 exp(−2nth/nc), (nth >nc)

(21)
with C0 = 4

√
3π/22/3[Γ(2/3)]2 ' 4.2. This modified

result for the shielded CSR power in the parameter regime
nth > nc differs markedly with the result in Eq. (11).
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Figure 1: Relative error in usingI0(p) to estimateI(p) as
a function ofx(p)

th , as obtained using Eq. (19).

To emphasize the importance of our findings, we com-
pare the analytic results given in Eqs. (20) and (21) with
the previous result in Eq. (11) by way of Figs. 2 and 3.
The circular dots in Fig. 2 are obtained numerically from
Eqs. (11) and (12) of Ref. [6] for the steady-state case,
a result that derives from application of the image charge
method. The crosses are obtained by direct summation of
power harmonics in Eq. (6), in which the upper limit of
the sum is chosen empirically by monitoring convergence
of the result. It is clear that, fornth > nc, our simple
result in Eq. (20) forp = 1 agrees well with exact calcu-
lations using the image charge method and superposition
of power harmonics. It is also clear that a large number
of p modes are needed only for the weak-shielding case
whennth/nc � 1. An alternative way to view the results
is provided in Fig. 3, in which the solid curve denotes the
Kheifets-Zotter result, and the dashed curve denotes the re-
sult of Eq. (21) which is accurate for nearly the full range
of values along the abscissa. Fig. 3 is to be compared with
Fig. 9 in Ref. [3], in which our dashed curve is replaced
by the exact results from the image-charge method. There
is no discernible difference between the two figures. These
comparisons show the validity of using Eq. (21) to describe
Pcoh/P

(0)
coh whennth ≥ nc, and they also underscore the

validity of the image-charge method.
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Figure 2: Comparison ofPcoh in Eqs. (20) and (21) with re-
sults from the image-charge method and other approaches.
Herenth/nc is varied by changingh with fixed values ofρ
(= 1 m) andσ (=1 mm.)
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Figure 3: Plots ofPcoh/P
(0)
coh versusΣ = σ/(2ρ∆3/2)

with ∆ ≡ h/(2ρ). This should be compared with Fig. 9
of Ref. [3].

4 DISCUSSION

According to Ref. [5], for thep = 1 mode, the radiation
intensity in thenth harmonic falls off exponentially asn
decreases fromnth to zero. This is seen in Eqs. (4), (5)
and (12) forp = 1, whereK2

µ(g3
1/3n2) ∝ e−n2

th/n2
for

n ≤ nth. If nth � nc, then the contribution of the ra-
diation intensity in the range0 < n ≤ nth is negligible.
However, fornth > nc, all the bunch frequencies lie in-
side the range0 < n ≤ nth, and thus those harmonics are
the main contributor toPcoh. Discarding these harmonics
results in a potentially considerable underestimation of the
radiated power.
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