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Abstract steady-state CSR power in agreement with the exact result
. o for n;, > n.. We show that for this parameter range the
There are several papers concerning shielding of COheerlieIded CSR power is not always negligibly small
ent synchrotron radiation (CSR) emitted by a Gaussian '
line charge on a circular orbit centered between two par-
allel conducting plates. Previous asymptotic analyses in
the frequency domain show that shielded steady-state C$& consider a line-charge bunch moving on a circular orbit
mainly arises from harmonics in the bunch frequency exef radiusp with angular frequency in the center plane
ceeding the threshold harmonic for satisfying the boundsetween two perfectly conducting platesat +h/2. Ac-

ary conditions at the plates. In this paper we extend theording to Kheifets and Zotter [2], based on the work of
frequency-domain analysis into the regime of strong shieldNodvick and Saxon, the power radiated by a single rela-
ing, in which the threshold harmonic exceeds the characteivistic electron in the:th harmonic is

istic frequency of the bunch. The result is then compared to

2 PREVIOUS RESULTS

B . . . <nh/mp 2
the shielded steady-state CSR power obtained using image drnewy ” o 9 9
charges. ¥ = — p;g Jn (wP) + 5 P2 I (vpp)

(2)
wherey,p = |/n? — g2 with g, = prp/h, andp is the
There have been several studies [1, 2, 3] concerning shielidex of eigenfunctions satisfying the boundary condition
ing of coherent synchrotron radiation (CSR) emitted by at the plates. Only propagating modes, i.e., those satisfying
Gaussian line charge on a circular orbit centered between> g,, contribute significantly to the powét, ; therefore,
two parallel conducting plates. Nodvick and Saxon [1] dewhenmp/h > 1 it suffices to use asymptotic expressions
veloped an exact expression for the power radiated by &f the Bessel functions for large
bunch in steady state, written as a summation over all har-

1 INTRODUCTION

. . ) . 1
monics of the radiated power. Using the asymptotic be- In(Ypp) = \/_—S(gf)Kl/g(gg/STLQ)’
havior of the Bessel functions in these radiated-power har- 177 g 3)
monics, Kheifets and Zotter [2] recently developed a sim- I3, (vpp) = E(f)QKz/s(gg/?mﬂ-

ple expression for the shielded CSR power as a function of
beam and machine parameters. In an alternative derivatiorhe modified Bessel functions are appreciable only when
Murphy, Krinsky, and Gluckstern [3] obtain the CSR poweg, > 92/2 > g,. Consequently, fowy, = ¢/p, the power

by including image charges from the parallel plates to caharmonic ofV electrons reduces to
culate the CSR-induced steady-state longitudinal electric

force across the bunch. P AN2e2¢ p<"h/’”’A .
According to Ref. [2], shielded CSR is important for har- " T37ph (n,p) (4)
monic numbers in the rangeu,, < n < n., where p=13
where
nn = /2/3(mp/h)*,  ne = p/os. (1) y 3 2
— 9P 2 p 2 p
Here,p andh denote the radius of the circular orbit and the Aln,p) = 03 [Kl/?’ <W> + o <W> ©)

plate separation, respectively, denotes the root-mean-

square bunch lengthy, is the threshold harmonic for sat- The CSR power generated by a relativistic Gaussian line
isfying the boundary conditions at the plates, ands the ~charge withV electrons is

characteristic harmonic number below which the radiation 0o

will be coherent. However, according to Fig. 9 of Ref. [3], P.op = Z pne*(ms/ﬂ)Q, (6)
which compares the shielded CSR power calculated using n—0

the image charge method with that given in Ref. [2], there In Ref. [2], it is assumed that the CSR power comprises

is an evident discrepancy. Fag;, > n., i.e., for strong . . . )
shielding, the result given by Ref. [2] underestimates thgnamly harmonics?, for whichn > ny,. Changing the

shielded CSR power considerably. summation ovep into integration gives

In this paper, we modify the analysis of Ref. [2] us- CoN?e*c 3
= —n"n

ing power harmonics in Ref. [1] to obtain a result for the by P (nen <n <ne) ()
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whereCy = 2C/3'/372, with C' ~ 3.68. The total CSR 1/3,2/3. Therefore, the modified Bessel functions in
power is then obtained by replacing the summation aver Eq. (5) are exponentially small Whe_;ﬁ/?m2 > 1/2 or

by an integration over = (no/p)?, n < n'?, and their contributions t&, are then negligi-
O N2e2c ble. This typifies the nonprqpagating modes, i.e., those for
Poop ~ 222 C C (LY R(,), whichp > nh/mp, becausg?/3n? > n/3 > 1 for large
2& Is (8) n. Consequently one can extend the summation pwuer
F(zy,) = dex3e™® ~ T(2/3, 241) infinity in Eq. (4) without sacrificing accuracy, and there-
Tth fore exchange the orders of summation for indigesdn

With 2o — (nen/ne)?, 2 = 4, andT(v, ) denoting an in combining Egs. (4) and (6) to obtain

incomplete gamma function.

2.2 &
The free space CSR power is obtained by settipgto Peon = ANTere Z I(p), (13)
0, 3mph e
P(O) - Nzezc F(O)Co 9 . . . .
coh = (25413 ) with 1(p) denoting the contribution of theth mode to the

. ) coherent radiated power:
whereF(0)Cy/2 ~ 0.35. This result agrees with that ob-

tained by Schiff [4], I(p) = Z A(nvp)e—(n/ncP. (14)
pO) _ N2e2¢ 3Y/0[T(2/3))? 10 "
coh — (p2021)1/3 27 ( )

To obtain a closed-form expression fér,,, we first cal-

in that3'/6[T'(2/3)]2 /27 ~ 0.35. The formalism of Eq. (8) culate the asympiotic form df(p). After defining

therefore sets the ratio of shielded CSR to that of free space
A P o) = () /ne)?, w=(n/n)?, (1)
P.on/PY = F T'(2/3). 11 .
con/ Foon = (@) /T(2/3) D e note that, provided,. > 1 andn? > 1, the summa-
3 MODIEIED ANALYSIS tion overn in Eq. (14) can be replaced by an integral:
We will now show that the results of the previous section I(p) ~ 39p /oo P (z)dx, (16)
are applicable only for weak shielding, namely, < n.., 4 Jo
due to the replacement of the sum opday an integral and with
the discarding of the contribution of harmonies< n;y,.
We do so by first showing that, for eagth mode satisfying (p) (p) (») —z
o , ® () = |2, [ Fth 2 [ Zn )| Tn©
the boundary conditions at the plates, there is a threshold "’ (x) = K1/3 2 + K53 9y .

2
harmonicn?) = p3/2 h iven in Eq. (1) i ‘
o = D/ °ngn, Whereny, given in Eq. (1) is

- (17)
; . _ (p=1

the threshold harmonic for = 1, i.e., ny, = "52 ). The Applying the asymptotic form of the modified Bessel func-
pth mode contributes significantly to the CSR power only; - i Eq. (12) for the frequency range< nii) gives

whenngfl) < e, OFp < (ne/ng)?/3. Using integration

overp on the interval0, co) to derive Eq. (7) from Eq. (4) o 2P
is valid only if n;, < ne, which is the quasi-free-space, f) (z) ~ P> = Zexp <—t—h — m) (x < mii)).
weak-shielding situation. However, if the parameters do x (18)
not satisfyn;;, < n., only the first fewp modes contribute . .
to P.,, in EQ. (6). In particular, when,;, > n., only the Hencel(p) in Eq. (16) is
p = 1 mode contributes significantly t8,,,, and in this N )
case Eq. (8) is manifestly inaccurate. Ip) = I%(p) +£I(p)’
We begin our analysis by showing that it is permissibleto Iy(p) = %/ fé”) () dx = 3mgpKo (2 xiﬁ)) ,
exchange the order of the summations gvandn, which 39 0
then allows an explicit calculation of the contribution ofthe AI(p) = Tp /(p) [F®(2) — £P (2)] da.
pth mode to the CSR power. The asymptotic behaviors of Tih (19)
the modified Bessel functions are . o . .
The relative error of estimating(p) usingl,(p) is plot-
g (large 2) tedin Fig. 1 as a function afﬁﬁ). The plot shows that when
K, (2) ~ 2z . @12) =P > 1, AI(p)/Io(p) is negligibly small, and in this limit
51“[;/](2/2)*” (z — 0,Rerv #0) I(p) ~ Ip(p). This circumstance arises because, in the in-

tegrand ofA7(p), the error introduced by using the asymp-
Numerically one finds that the asymptotic behavior ofotic form of K,,(z) is suppressed by a facter * for z >
K, (z) for large z is good to 10% at = 1/2 for v = xfi) > 1. Moreover, wherzriﬁ) > 1, we canuse Eq. (12) to
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. . 10 ; :
expressi (2 xfi’) of Eq. (19) in its asymptotic form, X - Eq(20) for p=Lonly
' ./ - 08¢ - ‘//’\’-\.\\. -~ Eq.(20) for p=1,3,5
after which we findlo(p) o< p 4 exp[—2p%/%(ngn /ne)]. €8 06| e Bt
This expression shows clearly that, when > n., Iy(p) E o4l .| x summation in Eq.(6)
rapidly decreases with increasing so in this strong- o” 02 N
shielding limit, the CSR power ml e L]
00 : : ‘ e
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ANZ2e2e &
Pcoh = 37Tph p:zl:g IO(p) (nth, > nc) (20) nthlnc

is dominated by = 1 mode, and its ratio to the free-spaceFigure 2: Comparison d?.. in Egs. (20) and (21) with re-
steady-state CSR power in Eq. (10) gives sults from the image-charge method and other approaches.
Heren /n. is varied by changing with fixed values op
Peon/P%) ~ Co(nyn/ne)>® exp(—2nun/ne), (nn>ne) (=1 m)ands (=1 mm.)
(21)
with Cy = 4+/37/2%/3[1'(2/3))> ~ 4.2. This modified

result for the shielded CSR power in the parameter regime 5 — =
H . . 2 q.(21)
ney, > n differs markedly with the result in Eq. (11). 10t ]
5
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th Figure 3: Plots ofP..,/P,,, Versusy = o/(2pA3/2)

with A = h/(2p). This should be compared with Fig. 9
Figure 1: Relative error in using(p) to estimatel (p) as  Of Ref. [3].
a function of:cg’b), as obtained using Eq. (19).

4 DISCUSSION
To emphasize the importance of our findings, we com-

pare the analytic results given in Egs. (20) and (21) witficcording to Ref. [5], for thep = 1 mode, the radiation
the previous result in Eq. (11) by way of Figs. 2 and 3intensity in thenth harmonic falls off exponentially as
The circular dots in Fig. 2 are obtained numerically fronflécreases fromy,, to zero. This is seen in Egs. (4), (5)
Egs. (11) and (12) of Ref. [6] for the steady-state cas@&nd (12) forp = 1, whereKﬁ(gf /3n?) oc e~ ™n/™ for
a result that derives from application of the image charge < 1. If ny, < ne, then the contribution of the ra-
method. The crosses are obtained by direct summation @#@tion intensity in the rangeé < n < ny, is negligible.
power harmonics in Eq. (6), in which the upper limit of However, forn;, > n., all the bunch frequencies lie in-

the sum is chosen empirically by monitoring convergencgide the rangé < n < ny,, and thus those harmonics are
of the result. It is clear that, for,, > n., our simple the main contributor ta”..,. Discarding these harmonics

result in Eq. (20) fop = 1 agrees well with exact calcu- results in a potentially considerable underestimation of the
lations using the image charge method and superpositisddiated power.

of power harmonics. It is also clear that a large number

of p modes are needed only for the weak-shielding case 5 REFERENCES
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coh
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