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Abstract

Projections of charged particle beam current density (pro-
files) are frequently used as a measure of beam position and
size. In conventional practice only two projections, usually
horizontal and vertical, are measured. This puts a severe
limit on the detail of information that can be achieved. A
third projection provides a significant improvement. The
Algebraic Reconstruction Technique (ART) uses three or
more projections to reconstruct 3-dimensional density pro-
files. At the 200 MeV H- linac, we have used this tech-
nique to measure beam density, and it has proved very help-
ful, especially in helping determine if there is any coupling
present in x-y phase space. We will present examples of
measurements of current densities using this technique.

1 INTRODUCTION

In Computed Tomography (CT), three dimensional recon-
struction techniques from projection have been used for
many years in radiology. The two dimensional Fourier
transform is the most commonly used algorithm in radiol-
ogy. In this technique a large number of projections at uni-
formly distributed angles around the subject are required
for reconstruction of the image. In the field of accelerator
physics, one expects that the relatively simple charged par-
ticle beam distributions can be reconstructed from a small
number of projections. In conventional practice only two
projections, usually horizontal and vertical, are measured.
This puts a severe limit on the level of detail that can be
achieved. The Algebraic Reconstruction Technique (ART)
introduced by Gordan, Bender and Herman[1] uses three
or more projections to reconstruct the 2-dimensional beam
density distribution. They have shown that the improve-
ment in the quality of the reconstruction is pronounced
when a third projection is added, but additional projections
add much less to the reconstruction quality.

2 ALGEBRAIC RECONSTRUCTION
TECHNIQUE (ART)

The ART algorithms have a simple intuitive basis. Each
projected density is thrown back across the reconstruc-
tion space in which the densities are iteratively modified
to bring each reconstructed projection into agreement with
the measured projection. Assuming that the pattern being
reconstructed is enclosed in a square space of n x n ar-
ray of small pixels,ρj

(
j = 1, . . . , n2

)
is grayness or den-

sity number, which is uniform within the pixel but differ-
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ent from other pixels. A “ray” is a region of the square
space which lies between two parallel lines. The weighted
ray sum is the total grayness of the reconstruction figure
within the ray. The projection at a given angle is then the
sum of non-overlapping, equally wide rays covering the
figure. The ART algorithm consists of altering the gray-
ness of each pixel intersected by the ray in such a way as
to make the ray sum agree with the corresponding element
of the measured projection. AssumeP is a matrix of m
x n2 and the m component column vectorR. Let pi,j de-
note the (i,j)th element ofP , andRi denote the ith ray of
the reconstructed projection vectorR. For 1 ≤ i ≤ m,
Ni is number of pixels under projection ray Ri, defined as

Ni =
∑n2

j=1 p2
i,j . ART is an iterative method. The density

numberρq
j denotes the value ofρj after q iterations. After

q iterations the intensity of the ith reconstructed projection
ray is

Rq
i =

n2∑
j=1

pi,jρ
q
j ,

and the density in each pixel is

ρ∼q+1
j = ρq

j + pi,j
Ri − Rq

i

Ni
with starting valueρ∼0

j = 0

where Ri is the measured projection ray and,

i =
{

m, if (q+1) is divisible m
the remainder of dividing (q+1)by m, otherwise

and,

ρq
j =




0, if ρ∼q ≤ 0
ρ∼q

j , if 0 ≤ ρ∼q
j ≤ 1

1, if ρ∼q
j ≥ 1

This algorithm is known as fully constrained ART.
It is necessary to determine when an iterative algorithm

has converged to a solution which is optimal according to
some criterion. Various criteria for convergence have been
devised. The discrepancy between the measured and calcu-
lated projection elements is

Dq ≡
{

1
m

m∑
i=1

(Ri − Rq
i )

2

Ni

} 1
2

,

and the nonuniformity or variance of constructed figure is

V q ≡
∑

j

(
ρq

j − ρ
)2

,

and the entropy constructed figure is

Eq ≡ −1
2 logn

∑
j

(
ρq

j

ρ

)
log

(
ρq

j

ρ

)
.
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Dq tends to zero,V q to a minimum andSq to a maximum
with increasing q. For a known test pattern (ρt

i,j), the Eu-
clidean Distance is define as

sq ≡
√

1
n2

∑
j

(
ρq

j − ρt
j

)2
.

3 TEST FIGURE

It is instructive to test the reconstruction capabilities of
ART with two to four views by using projections from a
known test figure. In the following example, we have used
an x-y coupled (about 18◦ )two-dimensional gaussian en-
closed in a square space of 100 x 100 array withσx = 5
andσy = 20. We have used a ray width in the 45◦ and
135◦ projection as

√
2 times of ray width in x or y projec-

tion, making number of ray in each projection same namely
100. Figure 1 shows the test figure and reconstructed test
figure from two projections. Figure 2 shows reconstructed
test figure from three and four projections.

Figure 1: (a) Original test figure and (b) reconstructed test
figure from two projections.

Figure 2: Reconstructed test figures from (a) three and (b)
four projections.

Figure 3 shows the contours of Figs. 1 and 2. It is clear
from Fig. 3 that two projections are not enough for catching
the coupling. The accuracy of the reconstructed figure from
four projection is slightly better than three projections. Fig-
ure 4 shows the discrepancy (D), variance (V), the entropy
(E) and the Euclidean Distance (s) as a function of iteration
number for case of three projections. The convergence cri-
teria was if discrepancy is less than 10−6. Table 1 shows
the numerical values of discrepancy (D), variance (V), the
entropy (E) and the Euclidean Distance (s) for two, three
and four projections.

Figure 3: Contour plots of test figure and reconstructed fig-
ures with two, three and four projections.

Table 1: The convergence criteria discrepancy (D), vari-
ance (V), the entropy (E) and the Euclidean Distance (s)
for two, three and four projections.

2 Proj. 3 Proj. 4 Proj.
Iteration No 67 1426 1083
Time (sec) 201 6393 6534
Discrepancy 1.0 10−6 1.0 10−6 1.0 10−6

Variance 4.8 10−8 1.3 10−8 1.3 10−8

Entropy 1.9 10+3 2.3 10+3 2.4 10+3

E. Distance 1.5 10−4 4.6 10−5 4.6 10−5

4 BEAM DENSITY MEASUREMENT

There are stepping wire profile scanners at 13 locations
throughout the 200 MeV linac and transport lines. These
scanners are mounted at a 45◦ angle with respect to hori-
zontal, and single horizontal and vertical wires are stepped
through the bea We have added a third wire at 45◦ to hor-
izontal in two of the scanners, one in the 750 keV line[2]
and one in the 200 MeV BLIP [3] transport line. Figure 5
shows a schematic of the scanner with three wires. Figure 6
shows the reconstructed density distributions at 750 keV
line. There is no x-y coupling in the 750 keV line. Figure 7
shows beam density contour plots in the BLIP line. The x-
y coupling is clearly seen. This coupling could come from
one or more rotated quadrupoles or vertical beam offset in
a dipole. In the presence of x-y coupling, the usual tech-
nique of emittance measurement from profiles at three or
more locations will not work. Figure 8 compares the mea-
sured and reconstructed projections in the BLIP line.

5 REFERENCES

[1] R. Gordonet al., “Three-Dimensional Reconstruction from
Projections: A Review of Algorithms”, International Review
of Cytology, Vol. 38, p. 111 (1974).

[2] J. G. Alessiet al., “ Upgrade of the Brookhaven 200 MeV
Linac”, Proceedings of the XVII International Linear Accel-

2024



Figure 4: The discrepancy (D), variance (V), entropy (E)
and the Euclidean Distance (s) as a function of iteration
number for case of three projections. The convergence cri-
teria was if discrepancy is less the 10−6.

Figure 5: Schematic of the scanner with three wires.
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Figure 6: Reconstructed 3D density distribution in the
750 keV line using ART.

Figure 7: Reconstructed contour plot using ART in the
BLIP line, showing x-y coupling.

Figure 8: Beam projection measured and reconstructed on
X, Y, and 45◦ planes at BLIP line.
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