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1 Introduction. 

From Jon? through I)erPmbrr of 1986 physicists at thP Magnet Test Facility 
(MTF) at I~‘ermilab rnpasured the fields of forty-eight Main Ring dipoles. 
Twenty-xx of these WPTF “Bl” style msgnpts, whose physical apertuws are 
rectangles with rounded corners, roughly 1.4 inchrs tall by 4.5 inches wide. 
A harmonic probr sampled the magnetic field of these magnets at thee loca- 
tions separat,rd by OIIP inch; thp probe’s radius was 0.6 inch. (Sw Figure 1,) 
As the probe rot&bps, “bucking coils” subtract the contribution from the 

Figure 1 Geometry of thr magnetic field measurements 

magnet’3 dipolr liPId from the signal Fouriw transforming the “residual” 
or (Lcrrorn field filt,ers out its harmonic content, the multipoles. Twenty- 
nin? normal and skrw multipoles were quoted at each of the three locations. 
St st.istiral errors associated with thrse data were estimated by taking one 
hundrrd mrnsurpmrnts at one location of one magnet. Perhaps - 40 of the 
174 mult,ipolcs rrcordpd for each magnet, were sufficiently above the noise 
to b? nwsningful. 

WP address hrrr the problem of combining the information from these 
thrr? sets of data 

Before beginning. it is worthwhile to review th? fundamental assumption 
which supports the entirr dwussion: that thp magnetic field is well repre- 
sented by R romplex analytic function. Within a source-free region, hori- 
zontal and wrt~cal components of B static magnetic field, 8(Z), must satisfy 
homogeneous Maxwell equations: 
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WWP it, not for thP last txrm in Eq.(l) th CSP would look identical to Caurhy- 
Rirmann r~quations for s onr-parameter family of analytic functions 

G(z) H1(2] I i&(z) 

of thr complex xrgumrnt z = II i izz; the (real) variable 23 (suppressrd) 
would only labrl ihfs individual mrmbvrs nf this family. One way Lo justify 
Ignoring (ht. unwant~l term is bo assume longitudinal symmetry, so that 
aHn/8zs 7 0 idwtically This sounds almost acwptablr near the center of 
(.hr mngn”t, but brcomes less so whpn one fnd of the probe extends beyond 
the edge of thr magnet. However, we can weaken this Iocal condition to the 
grohor A a! C. whrrr A!33 is the diffrwnrr in i3~ brtwrrn the endpoints of 
the probe, by mt?grating the firld over the length of thr prohe. Since B3 = 0 
at both ends, this just&s represent,ing at least the integrated transverse 
componrnl~ wilt! an analytic function. Arguing that hhe probe- and, more 
import nntty. I.hr particle brarw is actually sensitive only to integrated fields 
compliers ihic Iin? nf reasoning. 

2 Methods. 

IVr shall rlr-crib :h-ep mPthod3 for combining multipolp data which may 
bP useful 1Indr.r possibl d’R y I crenf assumpt,ions: (I) multlpole feeddown. (2) 
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expansion in orthogonal functions, and (3) fictitious sources. All three arv 
phenomenological--that is, they employ only the obwrvrd data--and RTP 
exceedingly simple, yet to do something mow exact would require R rull 
computw model of the magnet. 

2.1 Method of Multipole Feeddown. 

The “obvious” approach to this problem employs the fcrddown rffrrt, for 
multipoles, by which translating R quadrupole inducrs (I dipole firId, trans. 
lating a sextupole induces quadrupole and dipole fields, and so forth. Begin 
by defining complex multipoles c,(z,), evaluated at .z,,, as the coeffirirnts of 
a Taylor expansion of G about zO, 

C(z) = &(zo) -g Cn(Zo)(~ - zo)” (2) 
n:n 

cn s b,+ia, 

We have allowed for the possibility that thr rrferenw dipole field, L?,, may 
depend on z,; b, and a, are the usual normaliwd “normal” and %kcw” 
components of the multipolr. Them is IL linear rrlationship between the 
multipoles at the origin and those at any other point of refwence. 

R,[O)g c*(O)2 - B,(O) -&(O)[z -- 2” i 2,)s 
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= B,(O) fj [F ( ; > E*“c*Io)] (2 &,)” (3) 
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Equating this to the expansion in Q.(Z) provides the connwtion, which is 
written compactly using matrix notation’ 

4ZO) = M(Z”)C(O) , 

MA(zo) = 

i 

0 k/n 

(Bulb,) ( ,“, ) 2,” n k > “. 

The full data set is expressed by adjoining thr mntriws M( k 1) and M( I). 

(1;‘;; ) -:- (.p.) e(o) 

Data reduction would then consist of truncating this system and applyin!; 
linear regression, weighted by the estimated statistical errors, to fix the co- 
efficients, c(0). 

2.2 Method of Orthogonal Expansion. 

The power series of Q.(Z) is the natural way to expand functions analyl,ir on 
a circular aperture: in particular, the basis functions (z - zO)” we nrl hogonal 
over circles centered at zO. To make this more precise, lpt D wpws~nt 
the unit disk in the complex plane and let / and 9 be two complex-valur~l 
functions defined on D. We define the scalw product betwwn f and 9 in an 
obvious way: 

(fa 9)D 
II 
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where dA(+) - (i,/Z)dz’ p, dz is the natural nrra mrasuw owr II. It is ras) 
to verify that (,)D induces R metric and that 

(2”s zm)r, = * 6,, 
n-t I 

Thus, the analytic functions p,,(z) ~‘(n~~~-l),‘n z” form an orthonnrmnl 
family over D. 

Far more important than orthogonality which, aftw all. can br forcr? 1~1 
a Gram-Schmidt procedure ~~ is the property ofcornpleterwss thq funrtions 
p,, form R romplete basis for expanding functions analytic ovpr thr unit ~li<.i. 
but nol over R reclnng/r. (In order fo simplify ihr grometry, WC shall igrrctrl, 

the rounded corners and treat t,hP aperture as R. simple rectangle.) 
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Figure 2: Vertical residual field calculated using the Method of Sources. 

The problem of finding a corresponding set of basis functions, say t/t”(z), 
which are both orthogonal and complete over a rrctangular domain, R, can 
be solved by constructing a conformal transformation, u(z), which maps the 
interior of R onto the unit disk, D. If we have such a mapping, we can take 

v&&(z) = %(+)I* dz ’ 
for then 

($,.hn)R = 
II 

dA(zl I d+)ldt I2 d(44h(+)) 
R 

= 
II dA(u) d,(~)~rn(~) = Len 

u(R)=D 

That the set of functions {$,} is complete over R follows immediately from 
the observation that they are conformally related, via Eq.(4), to the set 
{p,,}, which is complete over D. 

We construct the transformation u(z) in two steps. First, the Weierstrauss 
elliptic function 

w(z) = P(z 1 w,.wz) 

maps a rectangle of dimension 2~1 x 2~9 in the a-plane into the half-plane, 
Im[w,l < 0. Second. the MSbius mapping 

w t ie 
u = ---7-s c real, positive 

w- tt 

takes the half-plane into the unit disk. Combining the two gives us the 
desired conformal transformation: 

u(z) :I PC” I ~1~.~2) + ie __- 

P(z I Wl,W2) - ie 

The parameters wI and w2 are fixed by the dimensions of the rectangle; the 
value oft determines the point that maps into the origin. Riemann’s famous 
Mapping Theorem assures us that no simpler conformal transformation ex- 
ists which takes rectangles into circles. 

The procedure now would be as follows. Expand G(z) over Ihe rectangular 
aperture according to 

G(z) = 2 gRha(Z) I 
n-cl 

with $I,, given by Equations (4) and (5). By Taylor expanding G, equivalently 
$,, about z, = l,O, +l we develop linar equations relating the coefficients, 
g,,, to the data, c,(z,). These are truncated, and the g,, obtained, as before, 
by linear regression. 

2.3 Method of Sources. 

Because G is an analytic function, it can be represented by a Csuchy integral, 

C(z) = is1 f ?$-k$ ( 

wound the aperture’s boundary. This we approximate with R Riemann sum. 

C(z) E I:;~%$e~ 

z Ij~++ (6) 

Figure 3: Vertical residual field at scan height 0.4 inches. 

The complex numbers Ik can be thought of 11s fictitious sources placed on 
the edges of the physical aperture. If we write an individual term as 

BZ+iB1 = L- (R=lbl(c~ - isz) t Wlsl(r~ t is,)) 2a I f I2 

then it is obvious that Re(lk] is interpreted as an electric current. and lm(lk 
&B a line density of magnetic monopoles located at uk. (To see this TOT- 
respondence, simply apply Stokes’s theorem lo M~xwell’s equations in the 
usual way.) 

Measuring field multipoles at a point, z,, amounts to Taylor expanding C: 
about that point. 

1 1 __ = -- 
z - Uk (2 - x0) - (Uk - 20) 

_ -5 (L~)“+l(z-i,)” 
n=o 

c(‘)=~[-~~2:(;,~~“)n+‘rk~(z~~~,,. 
lX=O k 

We identify the coefficient of (z zO)” with the nth complex magnetic mnl- 
tipole. ( See Q.(2). ) 

~~(~ol~,(rol = -~ 2; F (;;+-;)” t1 Ik 

The fictitious sources Ik are obtained by weighted linear regression on the 
data, after which the field can be evaluated using Eq (6). As an additional 
constraint, we set thr dipole component exactly to zero at the origin. 

G(O) = -&c Ik/tQ GE 0 
k 

This reflects the dipole subtraction from the datR and focusses t,he numerical 
procedure on the residual field. 

3 Calculations. 

The history of applying these ideas to MTF data was this: Emphasis wai 
placed first on implementing the most obvious approach, thP method of 
Multipole Feeddown. The one ingredient most essential to its applicnbilily 
is rapid convergence of the summation that appears iwide the square bracket 
in h.(3). In particular, z0 must be smallenough so that the factor zt “r,(n) 
offsets the divergence of the binomial coefficient. Unfortunately, this was nnf 
the case: offsets of it inch were far too large to make feeddown a viable, 
approach. Experimentation with a fading memory Kalman filter. done in 
the hope of developing an asymptotic procedure, proved unable to surmount 
this problem. 

The Method of Sources was tried next,. and it worked well almost in- 

mediately. After this success, the ongoing drwlopment of the Method r>T 

Orthogonal Expansion wbs stopped: no calculations were carried out win:! 
this third approach. 

Figure 2 illustratea one of Ihe calculations carried oob on data from n Main 
Ring dipole (ADM285) using the Method of Sources. The solid line shows Ik z iG(u*)Auk 
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a midplane scan (zZ -- 0) of the vertical component of the interpolating ACKNOWLEDGMENTS 
residual field, BR calculated from Eq.(B), normalized to 1O-.4 of the dipole 
field; the thrw dashed lines show the results of summing the thrre multipole I am indebted to J.D. Bjorken for encouraging rrw to abandon thP Ilop+ 

series at r0 -- I,O, and t 1 inches (Dipole field offsets at it were set less struggle to make Feeddown work and move on to another approach. ICay 

by the interpolating field; the - 10 -’ variation in E, (zo) was ignored.) The Hanft and Peter Mawr provided me with useful information on test prorr- 

interpolating field matches each series out to about half an inch from its dures at the Magnet Test Facility. Lee Thrriot helped rnp t,o RCCCSS t hr dar a 

center, where the series expansion abruptly fails. It also does an excellent on magnet ADM285. 

job of smoothly splicing the three data sets together. The interpolating field 
itself is good only to about zk1.5 inches; it cannot be used for extrapolation. 

We can see from this picture why, apart from the convergence problem, 
Feeddown was doomed to failure. The two regions of overlap between the 
wries-expanded fields are extremely small. and in one of them the expansions 
do not agrrr. It would have been impossible for the method to work under 
such conditions. 

In Figure 3 the horizontal scan is done at a vertical height of 0.4 inches 
from the magnet’s midplane. The solution continues to interpolate smoothly 
through the data even though there is now no overlap between the three se- 
ries. A number of other scans of both horizontal and vertical fields produced 
similarly encouraging results. 

Figure 4: Comparison between fiw sets of fictitious sources for interpolating 
the residual field. 

The interpolating field of Figure 2 was calculated using 26 .wurces, 10 
associated with each horizontal edge and 3 with each vertical edg.-, while that 
of Figure 3 uwd R configuration of 9 (horizontal) and 4 (vertical). The results 
are almost independent of these numbers. To demonstrate this insensitivity 
further, fiw different arrangements of sources. are compared in Figure 4. 
The artunl sourw values for the “9 and 4” case, normalized by &(O), are 

. Ielk 
+ right 

t top 
. bottom 

Figure 5 Valr~ps of the sources obtained using the ‘9 and 4” configuration. 

illustrated in Figure 5. Almost all the significant sources driving the error 
field fell on thP lrft and right edges of the aperture; the information contained 
in the original data has effectively been encoded into twrnty (real) numbers. 
No attempt was mad? to optimize the plawment or number of sources. My 
objective here wrzs only to demonstrate that at least one of thrse methods 
could be made to work on actual data taken at MTF. 
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