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Abstract

A computer code HERTPIA was developed for the
calculation of electromagnetic wake fields excited by
charged particles travelling through arbitrarily shaped
accelerating cavities. This code solves transient wave
problems for a Hertz vector. The numerical analysis is
based on the boundary element method. This program is
validated by comparing its results with analytical solutions
in a pill-box cavity.

Introduction

Beam loading effects strongly limit the performance of
linear accelerators and storage rings. Electromagnetic
interactions between charged particles and surroundings
such as beam ducts and cavities produce wake fields to
cause beam instabilities. Wake field analysis, therefore, is
indispensable for accelerator design. A three dimentional
analysis is required to treat non-axi-symmetric beam
behaviors and structures such as beam ducts, beam duct
joints, RF couplers, etec.

Three-dimensional analysis code have already been
developed; WELL (1) and 3D~BCI[2L. However, the code
WELL is applicable only to structures with surfaces
parallel and perpendicular to the beam. The code 3D~BCI
can treat arbitrarily shaped structures, but it may require
long CPU time as well as complicated mesh generation in
space.

We developed the computer code HERTPIA (Hertz-
vector-based particle-inducted-field analysis program) in
which a transient wave equation of the electric Hertz
vector is solved by the boundary element method. In
HERTPIA, the mesh is generated only on the boundary
surface and the CPU time is reduced because of permitting
rough mesh compositions and large time steps.

Basic Equation

In a vacuum, electromagnetic fields are described by the

Hertz vector 1 as follows,
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where
T:zct
cilight velocity
titime,

E:electric field vector,
Jivector of beam current density,
Zo:characteristic impedance in a vacuum.

The transient wave equation (3) can be rewritten in the

following integral form,
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Si:a soild angle viewed from the point r, to the
computational domain &,
6 /9 n:differential operator in the direction normal to the
boundary surface [°,
n :outside~viewing normal unit vector on the boundary
surface I,
Equation (5) is the basic equation in the boundary element
method.
Based on the Hertz vector, the boundary conditions on
perfectly conducting walls are given in simple forms,

a
= (ndljn |, — (ne M) =0, (6)
n
The computational domain £ is confined in a finite space,
which means that the boundary surface I’ includes some
open boundaries. For the boundary conditions imposed on
the open boundaries, the approximate techniques used in
the code TBCI({3)]and DBCI[4] are employed here to get
the following open boundary conditions,

all afl, 8ll
2 - — (at beam entrance)
an at ar ’

all all M

(at the others?,

on ) aT

where
Il :beam induced field in a free space.

Suppose that an exciting charge enters an empty cavity
at 2=0 and leaves at z=L with constant velocity v parallel
to the z-axis, and a test charge also moves at the same
velocity at transverse position (x,y) and at longitudinal
position s behind the exciting charge. The wake potential

defined as the momentum kick experienced by the
test charge is expressed by the following equation,
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{1, :z-component of Hertz vector /I,
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Discretization

The integral equation (5) is solved by the boundary
element method. The equation can be written in a
discretized form as
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where
No: total number of nodes on boundary I,
Mo: total number of nodes constituting local
domains including sources,

Ny
Bi= 22 By,
jr:l ’
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P, :source vector P in spatial element 1,

N min) (21
Lij (x)=322 23 5J,J(r,,_.mf xNg dl",
nel k=1 r,

I, : n-th boundary element,
J (I, %) tk-th node number around I},

N : number of boundary elements,
m(n): number of nodesin I},
Nk(2) : k-th two dimensional shape function,

*

N m) o
Lig (x)= 22 ZE 04000,k :6 xNi d2 ,
n=1 k=1 n

2, : n-th spatial ele ment including source,
J (%, ,k) k-th node number around &,,

N : number of spatial elements,
'm (M)t number of nodesin 2,
Nk(3): k-th three dimensional shape function,

1 {j=Jd)

5.y =
wi A 0 (j=d) .

Solving the discretized equations (9) with boundary
condition equations (6) (7), we get the sets of Hertz vectors
I and their normal derivatives all/on  at all bound’ar‘y
nodes, and finally we can obtain fields at arbitrary points
in the space 2 or on the boundary surface [".

We use the following equations to get Hertz
vestor fields M1 and 3ll/8n on the all boundary
nodes.

(1) On the perfectly conducting walls

I, -0,n,
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where
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il;: Hertz vector value at node j,

and @ satisfies the following equation,
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(2) On the open boundaries
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where /I, satisfies the following equation,

all, al,;
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Il,; : beam induced field at the i-th node in a free
space.

If the open boundary is not a beam entrance,
the beam induced field 77, vanishes.

(3) On the cross lines between the
conducting walls and the open boudaries

Two kinds of boundary conditions are given at
the nodes on the cross lines between the perfectly
conducting walls and the open boundaries. Double
nodes are conveniently defined. The node numbers i
and 1 are assigned to the double nodes with the
i-th node on the perfectly conducting wall and l-th
node on the open boundary.

The ©boundary fields are
following equations,

perfectly
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and ® satisfies the following equation,
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Comparison with analytical solution

The code HERTPIA has been verified in comparison
with exact analytical solutions for closed cylindrical
cavities (pill-box cavities). The solutions are obtained by
the modal analysis in the frequency domain.

Suppose an exciting charge with infinitesimal radius and
with Gaussian density distribution along the beam axis,

travells along the central axis of the pill-box
cavity, the longitudinal wake potential ygz(s) is
given by
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where

Ro:radius of cavity,
L :length of cavity,
J.:1-st order Bessel function,
jn:n—th zero of 0-th order Bessel function,
¢ :standard deviation of beam distribution,
T :peak current,
Imi j:imaginary part of value inside [ ].
The plasma dispersion function 7,(#) is defined as follows,
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By using Eq.(12), the calculation of the right hand

side of Eq.(11.a) converges rapidly with less
computational errors.
Numerical results obtained by HERTPIA  was

compared with the exact analytical solutions given
by Eg.(10). As an example, we set L=10cm, Ro=5cm,
g =2.5cm, and T=1A. It is verified that the value
Vz(s) converges in sufficient accuracy with the
truncation mode number n>30, 1Pi > 8y in Eq.(10].
Figure 1 shows the boundary mesh composition in the
HERTPIA calculatiorn. The numbers of divisions are
5 in the radial, 16 in the circumferential, and
10 in the axial directions respectively, and the
total numbers of elements and nodes are 336 and
370, respectively. Figure 2 compares the results

by HERTPIA and the analytical solutions with
respect to the longitudinal wake potential. The
Gaussian curve indicates the line charge density
distribution of the exciting charge. The

longitudinal wake potential is shown by the two
curves, The s0ild 1line indicates the HERTPIA
solution, and the broken line indicates the exact
analytical solution, which 1is obtained with the
truncation mode number n=50 and |p| 100 The two
curves almost coincide with each other within the
electron bunch ( |s|-"4¢ ), while the difference
between them at the back of the bunch is less than
2.5% of the maximum peak-to-peak value.

The CPU time required in the calculation of
the HERTPIA solution was about 5 minutes in the
HITAC M-200H computer with time step ¢ At=0.5cn.

Conclusions

We have developed the computer code HERTPIA
which is capable of calculating three-dimentional
wake fields. The formulation is based on the Hertz
vector, and the computational technique is based on
the boundary element mrthod. This program was
validated by comparing its results with the exact
analytical solution in a pill-box cavity model.
The characteristics of HERTPIA are simple mesh
generation, sufficient accuracy with short CPU time
and easy calculation of fields at arbitrary points.
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Fig.2 Longitudinal wake potential by Gaussian beam
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