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Abstract 

A computer code HE RTPIA was developed for the 
ca.lcul.ation of electromagnetic wake fields excited by 
charged particles travelling through arbitrarily shaped 
accelerating cavities. This code solves transient wave 
problems for a Hertz vector. The numerical analysis is 
based on the boundary element method. This program is 
validated by comparing its results with analytical solutions 
in a pill-box cavity. 

Introduction 

Beam loading effects strongly limit the performance of 
linear accelerators and storage rings. Electromagnetic 
interactions between charged particles and surroundings 
such as beam ducts and cavities produce wake fields to 
cause beam instabilities. Wake field analysis, therefore, is 
indispensable for accelerator design. A three dimentional 
analysis is required to treat non-axi-sym metric beam 
behaviors and structures such as beam ducts, beam duct 
joints, RF couplers, etc. 

Three-dimensional analysis code have already been 
developed; WELL (1 I and 3D-BCI[2!. However, the code 
WELL is applicable only to structures with surfaces 
parallel and perpendicular to the beam. The code 3 D-B CI 
can treat arbitrarily shaped structures, but it may require 
long CPU time as well as complicated mesh generation in 
space. 

We developed the computer code HERTPIA (Hertz- 
vector-based particle--ducted-field analysis program) in 
which a transient wave equation of the electric Hertz 
vector is solved by the boundary element method. In 
HERTPIA, the mesh is generated only on the boundary 
surface and the CP U time is reduced because of permitting 
rough mesh compositions and large time steps. 

Basic Equation 

In a vacuum, electromagnetic fields are described by the 
Hertz vector [I as follows, 
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where 
T=ct 
c: light velocity 
t:time, 
E:electric field vector, 
J:vector of beam current density, 

Zo:characteriatic impedance in a vacuum. 
The transient wave equation (3) can be rewritten in the 
following integral form , 
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8, :a soild angle v:ewed from the point r, to the 
computational domain a, 

o^/dn:different.ial operator in the direction normal to the 
boundary surface I‘, 

n :outside-viewing normal unit vector on the boundary 
surface I’. 

Equation (5) is the basic equation in the boundary element 
method. 

Based on the Hertz vector, the boundary conditions on 
perfectly conducting walls are given in simple forms, 
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The computational do main Q is confined i? a finite space, 
which means that the boundary surface r includes some 
open boundaries. For the boundary conditions imposed on 
the open boundaries, the approximate techniques used in 
the code TB CI !3 ] and DB CI (4 1 are em ployed here to get 
the following open boundary conditions, 
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where 

&:bea m induced field in a free space. 

Suppose that an exciting charge enters an empty cavity 
at zz0 and leaves at z=L with constant velocity v parallel 
to the z-axis, and a test charge also moves at the same 
velocity at transverse position (x,y) and at longitudinal 
position s behind the exciting charge. The wake potential 
defined as the momentum kick experienced by the 
test charge is expressed by the following equation, 
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I?, Z-CO mponent of Hertz vector il. 
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Discretization 

The integral. equation (5) is solved by the boundary 
element method. The equation can be written in a 
discretized form as 
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where 
No: totalnumberofnodes on boundary I‘, 
Mo:totalnumber ofnodesconstitutigloc~ 

domains including sources, 
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PI :source vector Pin spatial element 1, 
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r, : n-th boundary element, 

Jir", k) :k-th node num ber aroundr,, 

N : number of boundary elements, 
m(n): number of node8 in r,, 
Nk(2) :k-thtwo dimension~shape function, 

6&J,%,k1 in xN”dQ ’ 

0. : n-th spatialelementincluding source, 

J (a,, k) :k-th node number around Q", 

N: number ofspatialelements, 

m(n): number of nodes III Q,, 

Nk(3):k-ththree dimensiontishape function, 
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Solving the discretised equations (9) with boundary 
condition equations (6)(Y), we get the sets of Hertz vectors 
I7 and their normal derivatives Jrr/an at,tibound.ary 
nodes, and finally we can obtain fields at arbitrary points 
in the space L) or on the boundary surface r'. 

We use the following equations to get Hertz 
vector fields 77 and ~77,'~~ on the all boundary 
nodes. 
(1) On the perfectly conducting walls 
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II,: Hertz vector value at node j, 

and @, satisfies the following equation, 
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If,, : beam induced field at the i-th node in a free 
space. 

If the open boundary is not a beam entrance, 
the beam induced field 17~~ vanishes. 

(3) On the cro8s lines between the perfectly 
conducting walls and the open boudaries 

TWO kinds of boundary conditions are given at 
the nodes on the cross lines between the perfectly 
conducting walls and the open boundaries. Double 
nodes are conveniently defined. The node numbers i 
and 1 are assigned to the double nodes with the 
i-th node on the perfectly conducting wall and l-th 
node on the open boundary. 

The boundary fields are obained from the 
following equations, 
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Comparison with analytical solution Conclusions 

The code HERTPIA has been verified in comparison 
with exact analytical solutions for closed cylindrical 
cavities (pill-box cavities). The solutions are obtained by 
the modal analysis in the frequency do main. 

Suppose an exciting charge with infinitesimal radius and 
with Gaussian density distribution along the beam axis, 
travells along the central axis of the pill-box 
cavity, the longitudinal wake potential VZ(S) is 
given by 
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We have developed the computer code HERTPIA 
which is capable of calculating three-dimentional 
wake fields. The formulation is based on the Hertz 
vector, and the computational technique is based on 
the boundary element mrthod. This program was 
validated by comparing its results with the exact 
analytical solution in a pill-box cavity model. 
The characteristics of HERTPIA are simple mesh 
generation, sufficient accuracy with short CPU time 
and easy calculation of fields at arbitrary points. 
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where 
R o:radius of cavity, 
L :length of cavity, 
J,:l -st order Bessel function, 
jn:n-th zero of 0-th order Bessel function, 
(1 :standard deviation of beam distribution, 
? :peak current, 
Imi i:imaginary part of value inside I 1. 

The plasma dispersion function x,,(0) is defined as follows, 
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By using Eq.(12), the calculation of the right hand 
side of Eq.(ll.a) converges rapidly with less 
conputational errors. 

Numerical results obtained by HERTPIA was 
compared with the exact analytical solutions given 
by Eq.(lO). As an example, we set L=lOcm, Ro=5ca, 
(1 =2.5cn, and ?=lA. It is verified that the value 
Viz(s) converges in sufficient accuracy with the 
truncation mode number n 2 30, I P I 2 80 in Eq.(lO). 
Figure 1 shows the boundary mesh composition in the 
HERTPIA calculation. The numbers of divisions are 

6 in the radial, 16 in the circumferential, and 
10 in the axial directions respectively, and the 
total numbers of elements and nodes are 336 and 
370, respectively. Figure 2 compares the results 
by HERTPIA and the analytical solutions with 
respect to the longitudinal wake potential. The 
Gaussian curve indicates the line charge density 
distribution of the exciting charge. The 
longitudinal wake potential is shown by the two 
curves. The soild line indicates the HERTPIA 
solution, and the broken line indicates the exact 
analytical solution, which is obtained with the 
truncation mode number n=50 and ip] 100 The two 
curves almost coincide with each other within the 
electron bunch ( 1 5 / qa ), while the difference 
between them at the back of the bunch is less than 
2.5% of the maximum peak-to-peak value. 

The CPU time required in the calculation of 
the HERTPIA solution was about 5 minutes in the 
HI?AC M-200H computer with time st,eP oAt:()..%m. 
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Fig.2 Longitudinal wake potential by Gaussian beam 
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