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Summary

The emittance induced by space charge in a drifting beam
of finite length has been invesligaled, and a scaling law,
Eq. (6), has been obtained from siniple considerations of the dif-
ferent rates of expansion of different portions of the heam. The
scaling law predicts the initial rate of emittance growth, hefore
the beam shape has distorted significantly, and thus represents
an upper bound on tlie rate of emittance increase. This scaling
law has been substantiated by particle-in-cell simnlation and the
dependence on geometric factors evaluated for specific choices
of the beam profile. Figures 3 and 4 are nniversal emittance
growth curves for uniform cylindrical and Gaussian beams, re-
spectively.
ric factors have been evaluated explicitly for Gaussian profiles,

For long, axially nonuniform beams, the geomet-

Eq. (10), and other shapes.

Introduction

Previous calculations have shown that laser-irradiated pho-
todiodes may be a promising means of producing high-brightness
electron bunches at hundreds of amperes in short pulses (tens
of picoseconds) for injection into rf accelerators.’? Experiments
are now under way at Los Alames to assess this technology.®
By using a laser to create a short electron pulse, much of the
complicated and expensive hardware reqiired to bunch the beam
from a conventional electron source is eliminated. The dynam-
ics of these heams can be dominated by space-charge effects,
especially before the beam comiug from the diode is acceler-
ated to higher energies. Calculations of the transport of these
bunches from the source in drift tubes show an emittance in-
crease associated with the amount of space charge in the beams.

Much progress has been made recently in understanding
space-charge-induced emittance growth and its association with
nonlinear electric field energy.®¢ Simulations of the diode have
revealed that the emittance of the beams is minimized by tai-
loring the laser pulses to make the space charge as nearly uni-
form, axially and radially, as possible.? This is consistent with
the minimization of the nonlinear electric field energy for long
beams. The short electron bunches produced by the photoinjec-
tor are subject to a unique problem of emittance growtlh cansed
by the fact that the space-charge [orces are different in the ends
of the beam than they are in the center.

Physical Model and Scaling Law

Figure 1 shows a snapshol of the positions and phase space
for an electron bunch expanding under its own space charge
from a calculation with the particle-in-cell model 1S1S.127 As
can be seen, the bunch expands at different rates at different
positions in the beam. This effect is particularly evident from
the phase space in Fig. 1(b). 1t is this different expansion rate
that causes the emittance growth observed in the simulations
of drifting beams.
normalized emittance definition of

We use the rms

a . . . .
Lapostolle® that, for axisynunelric beams, can be written as
I < kd
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Fig. 1. Snapshots from ISIS simulation. {a) Particle positions
(b) Phase space. The beam has been injected {rom the left and
these snapshots are taken after the beam has begun to expand
from its space charge.

where () denotes a charge-weighted average over the particle
quantities. Tn this equation, » denotes the radial position of a
particle and »' = v3(3,/3.), where 3, and 3, are the radial and

— ir

axial velocities divided by the speed of light, 3 = \/,'33 1 32 and
N1
particles experience are the self-electric and magnetic fields. 1f
all the particles are assuned to have the same axial velocity,

Tor a drifting beam, the only forces that the

there exists a beam frame in which there is only an electric
field. In this frame, the radial electric field £, of an isolated,
axisymmetric-charged cylinder with one end at z=:0, of length
L, and radius a, can be wrilten as (cgs units)

L a 00
L. = 271'/ d:'/ r"r'/ dff(‘ﬂ:"zll.f]({7‘).,/0(57")pb(:'.r'),
Jo 0 0 '
(2)

wliere J, is the Bessel function of order n, and py is the charge
density of the beam in the beam frame. If we further assnme
that the beam density is uniform in 7 out to radius a, the inte-
grals over 7' and £ can be performed to give

= o az Jiz I ALA LA = A e ) BUA )R ], A
E 4\/r /0 ' f" KX/ X - X/2) - E(X) X1, (3)

where X = \// - ':;')?"‘r{-n*}";‘f)g, and the charge density has been

written as py = pof{z). The symbols K{X) and F(X) denote

the complete elliptic integrals of the lirst and second kind, re-
spectively.

This expression is easily evaluated numerically to yield
the radial electric field for various profiles, f(z). Even without
evaluating this integral, a useful scaling law can be obtained by

observing that Bq. (3) is of the forn
E. = pogir, 2}, (1)

where ¢ is a geometric factor that depends on the heam shape.
Before the beam shape has heen distorted signilicantly by the
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space-charge forces, the equation of motion for the radial veloc-
ity can be integrated to give
e

€
Et=—— pog('r,z)f, (5)
me mc

.Br: -

where t is the time that the beam has been drifling. In the
lab frame, we assume 3, »> 3. and take account ol the time
dilation, t1as = Ytheam, Lorentz contraction, prap = Ypbeam, and

use . (5

5) in Eq. (1) to And that the emittance scales as

vS
€n = ;EBEG(L/G)' (6)

The geometric factor ((L/a) depends on the details of the
charge distribution within the beamm and, in principle, can he
evaluated from Eq. (3) {or more generally, Eq. (2)] and the
averaging implied in Eq. (1). The current of the beam enters
3 (1 divided by

17 kA), and S is the distance that the beam has drifted.

through the dimensionless variable v = ¢I/me

In deriving this scaling law, it is assumed that the beam
has no initial emittance. The same argument with initial emit-
tance shows that the emittances add as the sum of the squares.
provided the initial emittance is not correlated in space, such as
would be the case for thermally induced emittance. Also, initial
convergence or divergence of the heam does not affect the result
as long as the change in beam shape can be neglected.

Numerical Simulations

@

To affirm the scaling predicted by . (6), munerical sim-
ulations of a drifting beam have been performed for a variety of
beam currents aud energies. The conliguration of the ISIS simu-

lations is illustrated in Fig. 1(a). The beam is injected from the

left at z/a = ~17.7 into the initially empty and field-free con-
ducting cylinder, and the time-dependent Maxwell’s equations
are solved for the electric and magnetic fields produced by the
beam. The particles, however, do not respond self-consistently
to these fields wntil the particles reach z = 0. This procedure
allows a smooth turn-on of the effects of the self-field. Other
methods of following the response of the beam t- {he self-fields
were tried, inchuling allowing the particles to respond as soon as
they enter the simulation region. In this case, the first particles
mitially respond only to the particles that have been injected
and not to the field of the complete beam. ln another method,
the heam was allowed to enter the cylinder, and the fields were
calculated. Then the field was turned on to all the particles at
the same time. This procedure causes the particles in different
parts of the beam to feel the space-charge forces for different
lengthis of time when the particles cross the plane where emit-
tances are calculated. The conclusion from such tests is that the
procedure described above gives the smoothest and most physi-
cal way to initialize the simulations of the eflects of space chiarge.
This also accounts for the fact that the snapshot shows the head
of the beam has expanded farther than the tail. However, when
the tail reaches the position of thie head i the snapshot, it will
have felt the space charge for the same length of time and will
have expanded just as much. Emittances were calculated from
Eq. (1) at various positions between z = 0 and =z = 26.6. Typ-
ical numerical parameters used were mesh sizes, Ar = Az =
a/ 10, with 12 particles/cell.

Figure 2 shows the results of eight ISIS simulations for
beams with charge densities that are uniform cylinders. From
the arguments for the scaling law in the previous section, we
find that the scaled emittance as depicted in the graph should

depend only on the aspect ratio of the beany in the heam frame
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Fig. 2. ISIS sinulations confirming the scaling law in

Eq. (8) for two diflerent aspect ratios of a slug heam with
various beam energies and currents.

(vL/a), where L is the length of the beani in the laboratory
frame. The siinulation results show the emiftance initially in-
creasing linearly with S, with a slope dependent only on the
aspect ratio as predicted by Eq. (6). The deviations from the
linear behavior exhibited for larger S are a result of the beam
changing shape under the influence of its own space charge and
are most pronounced for the cases with higher perveance. In all
cases, the linear increase of emittance with S represents a good
upper bound of the emittance growth. The conducting wall was
located at 2.5 times the initial beam radius for these caleula-
tions. Simulations performed with a wall radius five times the
imitial beam racins showed less than a 10% difference in emit-
tances and then only when the beain had more than doubled in
radius from its initial size.

Given Lhis scaling law, the geometric factar G(L/a) can
be found from numerical simulations by fixing the beam energy
and current and by varying the aspect ratio. Figure 3 shows the
results of a series of simnlations with 4 = 2.0, 1 = 0.01 for difler-
ent aspect ratios of a uniform cylinder or slug beam. The curves
are splines through the data to guide the eye. [For fixed current,
the amount of charge in the heam vanishes as the length of
the beam approaches zero, so the emittance growth approaches
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Fig. 3. Universal emittance growth curves for slug beams

abiained trom particle-in-cell siimulation.
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zero. For long beams, the beam expands self-similarly except at
the ends, which contribute less and less to the total emittance
as the beam becomes longer; thus, the emittance increase is less
for longer beams. In fact, the nonlinear field-energy model of
emittance growth? says that the emittance growth should van-
ish for infinitely long beams as loug as the beam’s deusity is
uniformm in the radial direction. The worst case occurs when the
aspect ratio in the beam frame (vL/a) is about 5. The oscilla-
tions iu emittance for tlhe smaller values of S are believed to he
the result of wake fields produced by the sharp-edged beani.
For other beam density profiles, the dependence on aspect
ratio will be different. Figure 4 shows the results of a series of
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Fig. 4. Universal emittance-growth curves for Gaussian beams
obtained from particle-in-cell simulation.

simulations with v = 2.0, = 0.01 for diffcrent aspect ratios of
a beam that is a uniform cylinder in the radial direction and
has a Gaussian distribution of the charge in the axial direction.
This is the type of beamn that one expects to produce from a
pliotodiode that uses a Gaussian laser pulse focused uniformly
on the cathode. The length of the pulse, L, is defined as the
full-width-half-maximumn of the Gaussian distribution. For this
profile, the effect of making the beam longer does not make the
radial field independent of z. Thus, the longer heams, which
contain more charge, have higher emittance growth. Note that
the worst emittance growth for Gaussian beams is about twice
as large as that for slug beams.

Analytical Approximations

In general, the calculation of the geometric factor G in
Eq. (6) involves evaluating the complicated integrals in Eq. (2)
or (3) for the radial electric field and performing the averages
in q. (1). Thus it is not possible to give an analytical result
for the general case. However, if the beam aspect ratio (L/a) is
large enough, the radial electric field will be much larger than
the axial electric Reld everywhere except near the ends of the
hean. ln this case, Gauss's law gives that the radial electric
field is approximately

E,. = 2mrpof(z). Q.

This ficld can be used in the equation of motion, Fq. (5), to
give
2me
r' 7:>7A'7'/)0f(abf(:)7 (8)
A2nic

where t1qp is the time the beam travels in the lab [rame. The
averages of the function h(r,z) in Eq. (1) are

ﬁzdxﬂﬂﬁﬂwmmﬂ
f:(:o dz f(=) [: drr '

(h(r,2)) =

\

(9)
Using Eq. (8) in Eq. (9) and f(z) given by a Gaussian, we {ind

2 - \/3 12 ©S
2v/3 )
n other words, the geometric factor for lang Gaussian beams is
(¢ =~ 0.556. This expression agrees within 1% of the large L/a

limit in Fig. 4 at the first probe position (S/a = 2.1).
For slug beams, this analysis gives zero emittance growth

(10)

€n —

¥

in the limit that L/a — oo, as expected. For beams with a
parabolic axial profile, the limiting geometric factor is ¢ = 0.2
One might think that adding charge to the ends of the beam
might increase the radial field there and moderale the difference
in the expansion rate. However, it is nol possible to eliminate
the effect this way, and there is now more charge in the unde-
sirable ends. For f(z) = (z/L)", where n is an even integer, in
the limit n — oo, G = 1/v/3, which is even slightly larger than
the Gaussian beam result.
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