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INTRODUCTION indeed depend only on K: 

Methods of nonlinear mechanics based on infinite expan- 
sions, such as perturbation theory and the Lie-algebraic method, 
are very cumbersome when carried to high orders. A promis- 
ing alternative is based on iterative numerical solution of the 
Hamilton-Jacobi equation.“’ In this approach, every iteration 
is the same calculation, which is not much more complicated 
than lowest order perturbation theory. 

In previous work’ we applied the Hamilton-Jacobi method 
to model problems displaying generic difficulties of nonlinear 
mechanics. Results concerning accuracy and convergence were 
encouraging, even in difficult regions of phase space close to 
the onset of chaos. Furthermore, we formulated a criterion for 
the onset of chaos, and verified its utility in a two-resonance 
model. 

Here we illustrate the method for a model of betatron mo- 
tion in one degree of freedom, namely, an harmonic oscilla- 
tor perturbed by a lattice of sextupoles. We obtain invariant 
surfaces in phase space and also finite time symplectic maps 
for tracking of single particles. The results indicate that the 
method will be effective in a full treatment with two degrees of 
freedom, including arbitrary lattice functions and dispersion. 

We anticipate that the method will be useful in lattice de- 
sign, since it provides a convenient and accurate way of assess- 
ing the effect of all resonances up to rather high orders. It could 
be incorporated in an optimization program, with the goal of 
determining nonlinear elements so as to eliminate distortions 
of invariant curves. 

H(&K+G4,B)+Gg=H1(K). (5) 

For invariant tori we look for solutions G of (5) that are peri- 
odic of period 27r in both r$ and 8. Provided that the Jacobian 
1 + G~K does not vanish, such a solution defines the required 
transformation via (3) and (4). The new action K will be 
constant, and the new angle $ will advance linearly with 0: 
4 = $0 + ~0, with perturbed tune VI = dHl/dK. The invari- 
ant torus is given in explicit form J = J(4,0) by (4). One can 
plot invariant curves, namely surfaces of section at constant 8. 

For finite-time maps we look for solutions G of (5) that are 
periodic in 4, but not in 0, and such that HI(K) f 0. Further, 
we require an initial condition in 0, namely G($, K,0 = 0) = 
0. For such solutions both $ and K are constant, and their 
constant values are interpreted as initial conditions of ($,J): 
$J = $0, K = Jo. The canonical transformation defined by (3) 
and (4) is the map (&,Jo) H (d(s),J(e)), which reduces to 
the identity at 6’ = 0. Since (3) is a nonlinear equation for 4, 
the map is not yet given in explicit form. In Sect. 3 we show 
how to represent it explicitly. 

We write G as a Fourier series in 4: and obtain 

Gdd,K,Q) = g img,( K, O)e’md. 
7PL=-IX 

Using (1) and taking the Fourier transform of (5) with m # 0 
we find 

(imu + ii) sm(Q) = -f(Q)Vm(Q;9), (7) 

HAMILTON-JACOBI EQUATION IN 
TERMS OF FOURIER AMPLITUDES 

In angle-action variables (1$,5) of the unperturbed prob- 
lem, our Hamiltonian has the form 

Vm(B;g) = $1 e--‘m+?+$, K + G4) d@ 

0 

H(#,J,Q) = UJ + f(Q)W~,J), (1) 

U($b, J) = J% cos3 4, (2) 

where 0, the azimuthal location of a particle, is the independent 
variable and j(Q) = j(Qt-2a) consists of a series of rectangular 
steps, each giving the location, extent, and strength of a sex- 
tupole. The unperturbed tune is v, and normalized Cartesian 
phase space coordinates are z = Ji cos 4, p = Ji sin 4. 

We seek a canonical transformation (4, J) ++ ($J, K) such 
that the transformed Hamiltonian depends at most on the new 
action Ii’. The transformation is described by a generating 
function Fz(d, K, 0) = dK + G($, K, 0) such that 

li,= ~+GK(+,K,Q), (3) 

J=K+Gg(d,K,Q), (4) 

where subscripts indicate partial derivatives. The Hamilton- 
Jacobi equation is the requirement that the new TJa.miltonian 

Notice that (6) includes no term with m = 0; thus (6) and (8) 
define V, as a function of the infinite vector g with components 

&n(Q), m # 0. We now use a Green function for the operator 
imu + a/% to convert (7) to an integral equation for gm(B); 
see Ref. 1. 

The periodic Green function gives an equation having so- 
lutions automatically periodic in 0; namely, 

eimv(R’+rrJgr(8-8’))foVn(B’; g) de’, (9) 
0 

where 0 < 0 5 2?r, m # O> and 

w(Q) F (.-i 
Q>O 
e<o. (10) 

On the other hand, the Green function that vanishes at 0 = 0 
gives an equation having solutions that vanish at 19 = 0: 

grn(e) = -eeimvB 
/ 

e”“““‘j(Q’)Vm(Q’;~) de’. (11) 
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restricted to points inside the magnets, where f(0) # 0. The 
harmonic oscillator phase advance between magnets, described 
by the factor exp(-imv0), is given automatically once the un- 
knowns have been determined. 

Equation (8) or (11) has the form g = A(g; K), where the 
final action K is a fixed input parameter. We solve the equa- 

tion by simple iteration g(P+‘) = A(g(p); K), with g(O) = O.‘l 

The first iterate g(l) coincides with lowest order perturbation 
theory. To evaluate the nonlinear operator A we perform the 
sum (6) and the integral (8) as Fast Fourier Transforms. For 
the 8’ integral we represent V,(@;g) by a linear spline (i.e., as 
a piecewise-linear function) over each. magnet. We then carry 
out the 0’ integral analytically, so as to avoid direct numerical 
quadrature of the oscillating factor exp(imvO’), which would be 
awkward at large mu. Taking sufficiently many mesh points, 
we conclude that V,(O’;g) is a very simple function of B’, ap- 
proximately quadratic over the extent of a sextupole. Better 
approximations, using cubic splines or a single cubic, are being 
tested. It appears that very few mesh points will be needed, 
perhaps 4 or 5 per magnet. 

In the case of invariant tori, the number of iterations to 
achieve a solution of course depends critically on the tune v, 
the amplitude K, and the magnet strengths f. Indeed, in- 
variant tori do not exist for all values of these parameters. In 
the case of finite-time maps, the convergence is much more 
robust, thanks to the absence of the small divisor sin rnvr; 
fast convergence appears to be global in regions of interest for 
accelerators. 

FINITE-TIME MAP IN EXPLICIT FORM 

To put the finite-time map in explicit form, we solve (3) 
and (4) for (+,5) as functions of (@,K). This is done using 
Fourier series in 4 rather than c#: 

The coefficients, being integrals over ti, may be rewritten as 
integrals over 4, in which the integrands arc known explicit 
functions of 4: see Ref. I. We find 

(;j = qd4:lf G&-w+w (-;; j . (13) 

~sfuIl-turn map d(O), J(0) -+ 4(2~), 5(2~) is thus represented 

(:;;;;) = ,,g (y:;ig:;) @o)+($; j (14) 
The coefficients &(K, O), J,(K, 0) have a very smooth de- 

pendence on K, which we represent by cubic spline functions. 
Their values at the spline knots Kci) are obtained by solving 
(ll), together with the corresponding equation for 3gm/3K, 
for K 2 K(l), i = 1,2,... ,n. That yields Gd and GK, from 
which we calculate the coeficients via (13). 

Evaluation of the map (14) amounts to evaluation of poly- 
nomials: first cubic polynomials in J(0) to find the coefficients, 
and then polynomials of degree mmaz in exp(i$(O)). The max- 
imum required mode number mmaz is not necessarily greater 
for a large ring than for a small one. Consequently, for a large 

. ..____ ..~ -..- ~- 
11 For better convergence one can em~>loy Newtoll’s method, see Ref. I. 

ring the burden of computation lies in calculating the coef- 
ficients d,, J,,, with sufficient accuracy; iteration of the map 
itself should be relatively inexpensive. At a given level of ac- 
curacy, the time to compute the coefficients increases linearly 
with the number of magnets. Another point worth noting is 
that the coefficients are also smooth functions of tune and mag- 
net strength. One could therefore evaluate them at discrete 
values in a continuous range of such parameters, and use spline 
interpolation for intermediate points. Thus one could compute 
and store maps for a continuous range of lattices once for all. 

NUMERICAL EXAMPLES 

To find realistic parameters for the model Hamiltonian (1) 
we begin with the Hamiltonian for a real lattice with focusing 
function K(s) and sextupole distribution S(s): 

H(z,p,s) = $3 + ;K(S)2 + $(s)z3. (15) 

where s is path length and the dimensionless transverse mo- 
mentum is measured in units of longitudinal momentum: p = 
pz/po. After two canonical transformations and a change of 
independent variable from s to 0 = s/R, where 27rR is the 
machine circumference, the Hamiltonian takes the form 

H(&, J,O) = YJ + $R(s)(J@(s))” cos3(& .- x(s)) (16) 

where 

1: = &Ypcos c$, 

p = -m(sin 4 - ~,Pcos $), 

ZTR 
1 r ds 

b 

41 = d + x(s) = 4 + 
US ’ ds’ -- 
R J I PO’ 

(17) 
0 

Both p(s) and x(s) will havelittlc :7 . ^ Jariation over the extent of a 
short sextupole; for present purposes we may assume that they 
are constant. Furthermore, x will be the same constant on ev- 
ery sextupole, since we assume that the sextupoles are spaced 
uniformly, and that the beta function varies periodically with 
period equal to the spacing. After a rotation of coordinates the 
Hamiltonian (16) then has exactly the form (1) that we have 
assumed. Note incidentally that our Hamilton-Jacobi equa- 
tions (9) and (11) apply just as well to the exact form (16): 
and would not be harder to solve if it were used. One could 
also include an arbitrary profile f(0) for each magnet, rather 
than a square step. 

To illustrate with a simple but realistic example we take 
a set of four sextupoles of equal strength and sign, separated 
by 90 degrees in phase advance: vA0 = 7r/2. We choose pa- 
rameters motivated by the SSC Conceptual Design: P(SF) = 
325 m, zmaz = 1 cm, S = 6.58 x 10m3/m3 for magnets of length 
1.5m, sextupoles spaced by 192m (cell length). The relation 
VA@ = 7r/2 determines the radius R in our model in terms of 
v and the cell length. 

We take K = 7.5 x lo-‘, and iterate (9) using 10 mesh 
points per magnet for the 0 integration, and a maximum mode 
number m 5 63; nearly identical results are obtained with 
5 mesh points and m 5 31. Trying various Y, we find con- 
vergence except in narrow bands around rational values v = 
n/m, m 5 63. Of course, the excluded bands increase in width 
with increasing K: and tend to zero with increasing m. 

1262 

PAC 1987



As expected, the pairing of sextupoles with 180’ phase dif- 
ference suppresses the third order resonance to high accuracy, 
for 0 outside the group of sextupoles. In most of tune space 
the dominant residual resonance is 4th order. Near 4th and 
5th order resonances we find convergence provided that the 
fractional part of the tune differs from l/4 or l/5, respectively, 
by greater then 0.2 %. Figs. 1 and 2 show invariant curves 
.7(4,b’ = 0) for v = 3.2505 and 3.2005; 0 = 0 is outside the 
group of magnets at the leading edge of the first sextupole. 
Fig. 3 shows a polar plot, the points (J’iz cos 4, J’/’ sind) for 
the same data as Fig. 1. Fig. 3 and Eq. (17) give znaz 51 2 
cm, slightly larger than the beam tube radius in the SSC de- 
sign. The onset of instability (actually wide islands) is found 
by tracking at zmaz - - 2.5 cm. Thus, the method works close 
to the dynamic aperture for v = 2.505, but the convergence is 

relatively slow; the normalized residual’ r = /]g - -4(g)l:/llgjl 
is 10m3 after 12 iterations, and lop7 after 30. 

In Fig. 4 we show results from tracking, obtained in 700 
iterations of the full-turn map of Eq. (14) for v = 3.2505. The 

4 Fig. 1 Invariant Curve, v = 3.2505 
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Fig. 2 Invariant Curve, v = 3.2005 
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initial condition was a point on the curve of Fig. 1. The 
agreement between Fig. 1 and Fig. 4 is good, and was obtained 
without muchrefinement in numerical technique. One iteration 
of the map required 40 ms of CPU time on a VAX 8650, in a 
double precision evaluation of (14) with jmj < 31. 

We conclude that the Hamilton-Jacobi method for invari- 
ant surfaces will probably be useful in lattice design and eval- 
uation. The method for finite-time maps seems promising, but 
it remains to be seen whether it can compete with conventional 
tracking methods. 
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