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Introduction

The coupling impedance is one of the major
parameters which determine the performance of an
accelerator. It is in general sufficient to quote the
longitudinal wvalue of the impedance from which the
transverse value can easily be derived. In a machine
like the SPS many of the vacuum chamber volumes can be
conveniently approximated by cylinders. It is therefore
ek ifiad tn
justified to
kinds of structures. In
impedance of these structures can be obtained from
existing programs which give the response to the
passage of a bunch of charges in the time domain [1].
However, it is difficult to probe the high frequency
domain in this way and a new program (CISLIM) has been

written to directly evaluate in the frequency domain
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cyllndrlcal cross-section variations. The results of
the program are presented for bellows , as well as for
the various cylindrical structures which appear in the
SPS. The computed SPS impedance is then compared with
the impedance values derived from beam measurements.

Theoretical Development of the Equations

The recipe of the computation has been given

by H. Hereward in 1975 [2]. The detailed calculation
nmm ha EarinAd (e (721
can be found in [3].

Smooth wall case

A charge is travelling down the centre line
of a cylinder according to a ed®t-Y5 ypropagation
law. Symmetry imposes solutions which belong to the TM
wave family. Hence only the components H¢, E. and Eg
will be different Ffrom zero. Furthermore, all th
derivatives with respect of ¢ will be zero due to
the symmetry in ¢. From Maxwell's equations the
following Bessel differential equation can be derived
using the substitution : k = w/¢c, where w is the
angular frequency and c¢ the speed of light.
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The integration constant A can be found from

the boundary conditions. When the material has
infinite conductivity Eg = 0 at the inner pipe
surface, Hence Y will take values such that

Jolat(y? + k%)]1=0. So that a v{y? , + k%) = z, where z,
is the mth zero of J,. The pipe radius a is used as

a normalisation coefficient. This leads to the new
geometric variables p = r/a, u = s/a, the normalized
wave number k, = ak and the normal propagation
constant T, = ay. The solutions for .the three
Fiald Aanmmennonta nam ha wwidbdboan Farm avary saccihla
field components can be written for every possible I'p
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The system is shown in figure 1. 1In the
general case a wave F travels forward and a wave B
backward with respect to the discontinuity. The origin
of these waves can be understood from the requirement
of field continuity. Indeed, the space charge is
perfectly continuous at the step for 0 < p < 1 but has
to be balanced by the F-wave for 1 < p < P. The link
between space charge and field is given by Ampére’s or
Gauss® law:

2wrEL g¢ = P/eg

E. gc 1is the space charge field. For 1<p<P,E+E. .. = 0
at the right hand side of the step. The continuity
equations between the F-wave and B-wave can be
written. The integration constants A are replaced by
Fp, and By respectively. This yields the following
set of equations
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1r ctively the zero's of
the Bessel functions and the correspondlng propagation
constant in a pipe with normal radius p.
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Note that the equations contain an infinite
sum in m. In fact it very much resembles a Fourier
analysis if only the J, and J, were cos and sin! The
Bessel functions have orthogonal properties similar to
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derive the following matrix equation which can be
solved for B and F:

T,.B +F = c

The matrices T, and T, are determined by the
geometry and the column matrix C by the properties of
the passing charge.
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Extension to many discontinuities

The configuration is shown in figure 2.

Waves are generated at the two steps when an
electric charge passes through the pipe. At each step
the continuity equations can be written down as was
done for a single discontinuity. Proceeding along the
same lines the following set of matrix equations is
obtained:

B, - T,F, ~-T,ATB, =0

T,.B, + F, ~- ATB, =.Cellqu. /B
- ATF, + B, +T,F, = Celknu:/B
~AT.T,.F, T,B, + F, =0

The matrices T, and T, are exactly the same as before.
The new matrix AT is a diagonal matrix. The waves B,
and F, participate directly in the equation while B,
first propagates from u, to ul.This feature is taken
care of by AT. Its diagonal elements are:

AT(m,m) = expl- Qpp(u, - u,)]

factor of the C-term on the right
comes about from the same reasons. The previous
calculation makes it possible to compute a single
bellows convolution or an open-ended cavity. However,
bellows are very rarely made up of one convolution
only and important vacuum chamber sections in the SPS
are much more complicated than that. The method can be
generalized for many steps. The matrices T, ,T, and C
are determined at each discontinuity.

The exponential

The calculation of the longitudinal impedance

impedance is equal to the
field Eg integrated along the

The longitudinal
longitudinal electric

centre of the structure divided by the passing
current. In other words
Zj(w) = (a/pBe)[Egz(p=0,t=ua/Bc,u)du (12)

The integral extends from -« to +o.

The waves exist in 4 types B, ,F, ,B,,F,, each with a
given number of spatial modes. The integral can be
calculated for each wave, i.e. for B,:
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integration limits, i.e. the ones
determined by the longitudinal position of the
discontinuity just replace u in (1 by the
corresponding normalised longitudinal step coordinate.
The value of the integrand at the ‘'external’
integration limits is taken to be zero.

For the 'internal’

Results obtained for bellows
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Fig. 3 Impedance of bellows

The result of an impedance analysis of a
bellows structure is shown in fig. 3. This impedance
is compatible with the response of the structure to
the excitation of a short bunch obtained with TBCI[1].
However, impedance analysis contains more information
than the time domain analysis. Note the very typical
repeating resonant peaks at higher frequencies. These
features recall the properties of open or short
circuited loss~less electrical lines. Such an
electrical line can be identified in the bellows
structure. The wavelength of the resonant frequency is
equal to 4 times the electrical length of the short
circuited parallel line formed by the side walls of an
undulation. The short circuit is simply the pipe
material at radius P. The mechanical length of this
line is P-1. The electrical length = P-1 + G/2. Many
simulation results obtained with CISLIM have confirmed
the model. The outputs clearly indicate that the
resonator 1is heavily damped. In other words the
resonating structure loses energy via the waves in the
end tubes. It is possible to calculate analytically
the damping of the resonator (3].

Calculation of the SPS Impedance from
Vacuum Chamber Geometry

The SPS vacuum system contains many bellows
their contribution to the impedance 1is very
small. 1In fact, the vacuum pump-port chamber at every
magnet unit turns out to be one of the most
contributing elements. Moreover, it is a more
complicated structure than a bellows and several
resonances can be identified (fig. 4). The lowest
resonance occurs at f = 1.35 GHz with an extremely
high quality factor. The resonant frequency
corresponds to the frequency of the lowest propagation
mode in the largest part of the cavity. In practice,
these resonances are damped by small resistive
cylinders installed in the enlarged chamber.
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Fig. 4 Impedance of Dumping Port

Computation of the SPS Impedance
from the hardware

The Ffollowing table gives an overview of the
results ~of computer calculation of Z;) of the
various types of vacuum chamber that exist in the SPS.

The values found under the column heading Z/n
are calculated with the program CISLIM while Z,
has been derived using the classical formula

Z, = (2R/b?)(Z/n)

where b is the radius of the continuous beam tube. The
sign is relative in the sense that for a flat chamber
the coherent horizontal tune shift caused by the wall
impedance has the opposite sign of the tune shift in
the vertical plane.
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The main contributions to the impedance come
from vacuum port chambers (part of 'Special
chambers'), the accelerating cavities and to a lesser
extent from the special magnet chambers. The lowest
resonances in these last two structures are well
within the frequency spectrum of SPS bunches. The Z/n
quoted in table I for these elements is derived from
the low frequency inductance. It can be shown that
this is correct for the SPS based on the calculation
of an effective impedance [3].

Table !: SPS impedance computed from hardware

ELEMENT Z/n Z, Hor Z, Ver
Q ﬁ]ﬂhn Q/m
ISOLATED BELLOWS 0.1214 0.0364 0.0364
TRANSITIONS 0.1261 0.045 0.045
SPECIAL CHAMBERS 2.41 -5.4829 8.7478
SPECIAL MAGNETS 0.552 -1.337 2.136
DIRECTIONAL COUPLERS 0.0172 0.0376 0.0376
CAVITIES 29183 1.5136 1.5136
TOTAL 6.2 -5.2 12.5

From what precedes it can be concluded that
the SPS impedance can be approximated by a resonator
at 1.35 GHz (the lowest resonant frequency of the
vacuum port chamber) and some low quality Ffactor
determined by the damping resistors in the same
chamber.

Measurement of the SPS impedance with beam

In the following experimental results are
reported concerning the inductive or imaginary part of
Z/n, the inductive part of Z, and the resistive

part of Z/n.

Inductive part Z/n

When a bunch passes through a chamber with an
inductive Z; a decelerating voltage is generated
by this inductance which modifies the longitudinal
focussing of the beam and hence the bunch length for a
given emittance. A value for Z/n can be derived from
these bunch lengthening measurements. This yields an
average value of 7.5 @ for Im(Z/n) in reasonable
agreement with the results of the previous paragraph.

Imaginary part of Z,
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The imaginary part of Z, can be determined

by measuring the coherent tune shift of a single bunch
as a function of its intensity. These measurements
were done several times in the SPS. The result is
shown in figure 5. The interpretation of these data is
delicate since two effects produce a linear tune shift
dependence with the bunch intensity, that is to say,
the imaginary part of 2, and the direct space
charge effect [3]. In fact, the two effects add in the
vertical plane and subtract in the horizontal plane.
Since both effects are of the same order of magnitude
the resulting effect in the H plane is very close to
zero.
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The tune shift dependences can be read from
figure 5 horizontally AQH/iso and vertically AQV/i=
2.8 10~° where i is the peak current in the bunch.

This yields Z,y = 13 MQ/m and Z,,=8 MQ/m again in
reasonable agreement with the calculations.

Beam measurement of the resistive part of Z/n

From the hardware is it not possible to make
definite statements about the resistive value of Z/n.
Nevertheless, it is interesting to derive the

resistive part of 2/n from beanm measurements and
compare with the imaginary part to evaluate the
quality Ffactor of the equivalent resonator. The

experimental results from [4] and {51 are used in what
follows. It is claimed that R(Z/n) can be derived from

thresholds and growth rates of the y—-wave
instability.

u-wave measurements at 26 GeV/c

The bunch length was measured for various bunch

intensities. These data are used in the following way
to derive R(Z/n). The bunch is supposed to blow up
until it is stable with respect to the p-wave
instability. The stability criterion involves the
knowledge of dp/p, the corresponding half bunch length
which together determine the bunch area, and a factor
derived from the stability diagram (local application
of the Keil-Schnell criterion). This determines the
amplitude of the impedance vector in the stability
diagram which is just stable. The average value of
R{(Z/n) turns out to be 40 Q.

Conclusion

The inductive impedances derived from bean
measurements in the SPS are in extremely good
agreement with the values derived for the hardware
using the computer code presented in this paper. The
total equivalent impedance of the SPS is a broadband
resonator with a quality factor of around 6. This is
based on the value of the shunt impedance calculated
from measurements of the u-wave instability. The
agreement with the widely used model of a Q = 1
resonator is fair.
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