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Introduction 

The coupling impedance is one of the major 
parameters which determine the performance of an 
accelerator. It is in general sufficient to quote the 
longitudinal value of the impedance from which the 
transverse value can easily be derived. In a machine 
like the SPS many of the vacuum chamber volumes can be 
conveniently approximated by cylinders. It is therefore 
justified to concentrate the calculations on these 
kinds of structures. In principle, the coupling 
impedance of these structures can be obtained from 
existing programs which give the response to the 
passage of a bunch of charges in the time domain (11. 
However, it is difficult to probe the high frequency 
domain in this way and a new program (CISLIM) has been 
written to directly evaluate in the frequency domain 
the longitudinal impedance of an arbitrary sequence of 
cylindrical cross-section variations. The results of 
the program are presented for bellows , as well as for 
the various cylindrical structures which appear in the 
SPS. The computed SPS impedance is then compared with 
the impedance values derived from beam measurements. 

Theoretical Development of the Equations 

The recipe of the computation has been given 
by H. Hereward in 1975 (21. The detailed calculation 
can be found in 131. 

Smooth wall case 

A charge is travelling down the centre line 
of a cylinder according to a ejwt-ys propagation 
law. Symmetry imposes solutions which belong to the TM 
wave family. Hence only the components H+, Er and ES 
will be different from zero. Furthermore, all the 
derivatives with respect of I$ will be sero due to 
the symmetry in 9. From Maxwell's equations the 
following Bessel differential equation can be derived 
using the substitution : k = w/c, where w is the 
angular frequency and c the speed of light. 
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The Bessel function of the first kind is chosen since 
it ensures finite values in the centre of the pipe. 

H+ = AJ,[r/(yZ + kZ)l 

Es = (A/jwcoW(ye + k’)Jo[r/y’ + k2)1 

E, = (yA/jwc,)J,Ir(y' + k')l 

The integration constant A can be found from 
the boundary conditions. When the material has 
infinite conductivity Es = 0 at the inner pipe 
surface, Hence y will take values such that 
J,[a!(y' + k')l=O. So that a /fyz m + k') = zm where zm 
is the mth zero of J,. The pipe radius a is used as 
a normalisation coefficient. This leads to the new 
geometric variables p = r/a. u = s/a, the normalized 
wave number k, = ak and the normal propagation 
constant r, = ay. The solutions for the three 
field components can be written for every possible rm: 
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The system is 

Fig. 2 

shown in figure 1. In the 
general case a wave F travels forward and a wave B 
backward with respect to the discontinuity. The origin 
of these waves can be understood from the requirement 
of field continuity. Indeed, the space charge is 
perfectly continuous at the step for 0 < p < 1 but has 
to be balanced by the F-wave for 1 < p < P. The link 
between space charge and field is given by Ampere's or 
Gauss' law: 

2nrE r sc = P'co 

E r sc is the space charge field. For l<p<P,E,+E, sc = 0 
at the right hand side of the step. The continuity 
equations between the F-wave and B-wave can be 
written. The integration constants Am are replaced by 
Fm and 8, respectively. This yields the following 
set of equations 

pckni2nap = -~-~r~l~F, (l<p<P) 

z-,l-,J$,= -zrn pm i r JF ,,-, (P’ 1) 

The factors zpm and rpm are respectively the zero's of 
the Bessel functions and the corresponding propagation 
constant in a pipe with normal radius p. 

Note that the equations contain an infinite 
sum in m. In fact it very much resembles a Fourier 
analysis if only the Jo and J, were cos and sin! The 
Bessel functions have orthogonal properties similar to 
the cos and sin functions and this can be used to 
derive the following matrix equation which can be 
solved for B and F: 

B - T,.F = 0 

T,.B+F =C 

The matrices T, and T, are determined by the 
geometry and the column matrix C by the properties of 
the passing charge. 
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Extension to many discontinuities 

The configuration is shown in figure 2. 

Waves are generated at the two steps when an 
electric charge passes through the pipe. At each step 
the continuity equations can be written down as was 
done for a single discontinuity. Proceeding along the 
same lines the Following set of matrix equations is 
obtained: 

B, - T,.F, -T,.AT.B, =o 

T,.B, + F, - AT.B, = -c&p, lb 

- AT.F, + 8, +T,.F, = C&u@ 

-AT.T,.F, - T,.B, + F, =o 

The matrices T, and T, are exactly the same as before. 
The new matrix AT is a diagonal matrix. The waves B, 
and F, participate directly in the equation while B, 
first propagates from u;, to u,.This feature is taken 
care OF by AT. Its diagonal elements are: 

AT(m,m) = exp[- QPm(uz - u,)l 

The exponential factor of the C-term on the right 
comes about from the same reasons. The previous 
calculation makes it possible to compute a single 
bellows convolution or an open-ended cavity. However, 
bellows are very rarely made up of one convolution 
only and important vacuum chamber sections in the SPS 
are much more complicated than that. The method can be 
generalized for many steps. The matrices T,,T, and C 
are determined at each discontinuity. 

The calculation of the longitudinal impedance 

The longitudinal impedance is equal to the 
longitudinal electric field Es integrated along the 
centre of the structure divided by the passing 
current. In other words 

Z,,(W) = (a/pflc)~E,(p=O,t=ualBc,u)du (12) 

The integral extends from -a to +a. 
The waves exist in 4 types B,.F,,B,,F,, each with a 
given number of spatial modes. The integral can be 
calculated for each wave, i.e. For B,: 

~,,~~~=B~~z,~!(pkn)(jkn+~‘m)eijlhfrlm’~ 

For the ’ internal’ integration limits, i.e. the ones 
determined by the longitudinal position of the 
discontinuity just replace u in (1) by the 
corresponding normalised longitudinal step coordinate. 
The value of the integrand at the ‘external’ 
integration limits is taken to be zero. 

Results obtained For bellows 
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Fig. 3 Impedance of bellows 

The result of an impedance analysis of a 
bellows structure is shown in fig. 3. This impedance 
is compatible with the response of the structure to 
the excitation of a short bunch obtained with TBCI[l]. 
However, impedance analysis contains more information 
than the time domain analysis. Note the very typical 
repeating resonant peaks at higher frequencies. These 
features recall the properties of open or short 
circuited loss-less electrical lines. Such an 
electrical line can be identified in the bellows 
structure. The wavelength of the resonant frequency is 
equal to 4 times the electrical length of the short 
circuited parallel line formed by the side walls of an 
undulation. The short circuit is simply the pipe 
material at radius P. The mechanical length of this 
line is P-l. The electrical length = P-l + C/2. Kany 
simulation results obtained with CISLIW have confirmed 
the model. The outputs clearly indicate that the 
resonator is heavily damped. In other words the 
resonating structure loses energy via the waves in the 
end tubes. It is possible to calculate analytically 
the damping of the resonator [31. 

Calculation of the SPS Impedance from 
Vacuum Chamber Geometry 

The SPS vacuum system contains many bellows 
but their contribution to the impedance is very 
small. In fact, the vacuum pump-port chamber at every 
magnet unit turns out to be one of the most 
contributing elements. Moreover, it is a more 
complicated structure than a bellows and several 
resonances can be identified (fig. 41. The lowest 
resonance occurs at f = 1.35 GHz with an extremely 
high quality factor. The resonant frequency 
corresponds to the Frequency of the lowest propagation 
mode in the largest part of the cavity. In practice, 
these resonances are damped by small resistive 
cylinders installed in the enlarged chamber. 
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Fig. 4 Impedance of Dumping Port 

Computation of the SPS Impedance 
from the hardware 

The following table gives an overview of the 
results of computer calculation of the 
various types 

Zll of 
of vacuum chamber that exist in the SPS. 

The values found under the column heading Z/n 
are calculated with the program CISLIM while ZI 
has been derived using the classical formula 

ZI = (2R/b’)(Z/n) 

where b is the radius OF the continuous beam tube. The 
sign is relative in the sense that for a flat chamber 
the coherent horizontal tune shift caused by the wall 
impedance has the opposite sign of the tune shift in 
the vertical plane. 
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The main contributions to the impedance come 
from vacuum port chambers (part of ‘Special 
chambers’ 1, the accelerating cavities and to a lesser 
extent from the special magnet chambers. The lowest 
resonances in these last two structures are well 
within the frequency spectrum of SPS bunches. The Z/n 
quoted in table I for these elements is derived From 
the low frequency inductance. It can be shown that 
this is correct for the SPS based on the calculation 
of an effective impedance (31. 

Table I: SPS impedance computedfrom hardware 

ELEMEhT Z/n Z Hor Z Ver 
n k &O/m Q/m 

ISOLATED BELLOWS 0.1214 0.0364 0.0364 
TRANSITIONS 0.1261 0.045 0.045 
SPECLAL CHAMBERS 2.41 -5.4829 8.7478 
SPECL4L Mr\GKETS 0.552 -1.337 2.136 
DIRECTIONAL COUPLERS 0.0172 0.0376 0.0376 
CAVITIES 2.9183 1.5136 1.5136 
TOTAL 6.2 - 5.2 12.5 

From what precedes it can be concluded that 
the SPS impedance can be approximated by a resonator 
at 1.35 GHz (the lowest resonant frequency of the 
vacuum port chamber) and some low quality factor 
determined by the damping resistors in the same 
chamber. 

Measurement of the SPS impedance with beam 

In the following experimental results are 
reported concerning the inductive or imaginary part of 
Z/n, the inductive part of ZI and the resistive 
part of Z/n. 

Inductive part Z/n 

When a bunch passes through a chamber with an 
inductive -41 a decelerating voltage is generated 
by this inductance which modifies the longitudinal 
focussing of the beam and hence the bunch length for a 
given emittance. A value for Z/n can be derived from 
these bunch lengthening measurements. This yields an 
average value of 7.5 R for Im(Z/n) in reasonable 
agreement with the results of the previous paragraph. 

Imaginary part of ZI 
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The imaginary part of Z, can be determined 
by measuring the coherent tune shift of a single bunch 
as a Function of its intensity. These measurements 
were done several times i,n the SPS. The result is 
shown in Figure 5. The interpretation of these data is 
delicate since two effects produce a linear tune shift 
dependence with the bunch intensity, that is to say, 
the imaginary part of ZI and the direct space 
charge effect [3]. In fact, the two effects add in the 
vertical plane and subtract in the horizontal plane. 
Since both effects are of the same order of magnitude 
the resulting effect in the H plane is very close to 
zero. 

The tune shift dependences can be read from 
figure 5 horizontally AQH/i=O and vertically AQV/i= 
2.8 10-J where i is the peak current in the bunch. 
This yields ZIv = 13 MQ/m and Zu1=8 MR/m again in 
reasonable agreement with the calculations. 

Beam measurement of the resistive part of Zln 

From the hardware is it not possible to make 
definite statements about the resistive value of Z/n. 
Nevertheless, it is interesting to derive the 
resistive part of Z/n from beam measurements and 
compare with the imaginary part to evaluate the 
quality factor of the equivalent resonator. The 
experimental results from 14 1 and 151 are used in what 
follows. It is claimed that R(Z/n) can be derived from 
thresholds and growth rates of the u-wave 
instability. 

p-wave measurements at 26 GeV/c 

The bunch length was measured for various bunch 
intensities. These data are used in the following way 
to derive R(Z/n). The bunch is supposed to blow up 
until it is stable with respect to the p-wave 
instability. The stability criterion involves the 
knowledge of dp/p, the corresponding half bunch length 
which together determine the bunch area, and a factor 
derived from the stability diagram (local application 
of the Keil-Schnell criterion). This determines the 
amplitude of the impedance vector in the stability 
diagram which is just stable. The average value OF 
R(Z/n) turns out to be 40 R. 

Conclusion 

The inductive impedances derived from beam 
measurements in the SPS are in extremely good 
agreement with the values derived for the hardware 
using the computer code presented in this paper. The 
total equivalent impedance of the SPS is a broadband 
resonator with a quality factor of around 6. This is 
based on the value of the shunt impedance calculated 
from measurements of the p-wave instability. The 
agreement with the widely used model of a Q = 1 
resonator is fair. 
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