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the framework cf the Vlasov equation. In the case of a
Gaussian beam this non-perturbative formalism simpli-
fies to a pair of equations of motion which together
with the dispersion relation fully describe nonlinear
saturation of initially unstable coherent mode. This,
in turn, provides a stabilizing mechanism (via Landau
damping) for the overall distribution function.
Finally, some predictions about the the energy
overshoct are made.

Introduction

Various linear theories give the correct analytic
description of short-time evolution of coherent insta-
pilities, e.g. in terms of the initial growth-rate.
However, this quantity fails to characterize longer
time scales, i.e., when the growing instability can no
longer be considered as a small fluctuation of the
cverall particle distribution. In order to go beyond
short-time evolution studies of collective modes, one
has to develop a non-linear description of the beam
dynamics.

Following the arguments cf Chin et al.l, when the
initial amplitude of the coherent mode is small and the
instability does not develop too rapidly, one can
assume that the nonlinearity modifies the particle
distribution at a rate much smaller than the linear
response of the system. Under this adiabaticity assum-
pzion one can formulate instantaneous dispersion rela-
tion,? similar to the one employed in the linear
theories.

Here we apply a non-perturbative approach to the
Vlasov equation. The resulting formalism describes the
long-time behavior of driven coherent modes, their
saturation due to the increasing Landau damping
mechanism, and finally, how they modify the uniform
part of the density distribution. Some predictions
about the the energy overshoot are made on the basis of
presented scheme.

Theoretical Approach

Censider a beam of particles inside a storage ring
modeled by the following statistical density distribu-
tion function

1(e,00) = Ple) + 2 h (el e (1
n=0

where 8 is the azimuthal angle around the ring and €
represents the erergy deviation from its synchronous
value, Ec.Fcurier series representation guarantees
periodicity of the distribution, while the condition

h (et =h "(el), 2

n

assures that our density distribution is a real quan-
-ity. The Vlasov equation which governs f(e81) can be
written as follows
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Here m=c00+k°£ and ko=-nB_2mo/E° {(n<0below the transi-
tien) .

The beam environment is modeled by the wake-field
of the storage ring represented in the frequency domain
by the coupling impedance Z(w). In turn, the non-uniform
current coupling induces additional potential,3 chang-
ing the energy of the beam by

€ =-ew > Z,0,% gon
nz0
where (4)
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and

Causality is built into Z{w) through the Kramers-
Kronig relatiqnship(zn*=Zm)which, together with Eq. (2),
assures that £ is also a real gquantity. Substituting
Egs. (1) and (4) into Eg.(3) and using orthogonality of
aziruthal plane waves, one can rewrite the Vlasov equa-
tion as a set of coupled eqguations of motion for indi-
vidual azimuthal harmonics. We shall emphasize that the
equations resulting from our non-perturbative treatment
of the Vlasov equation fully describe nonlirear beha-
vior of the beam-storage ring system. They are given by
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One can notice that for a high-Q impedance, Z{w),
its real part is sharply peaked around a single har-
monics, n~10%, and is extending over several, AN, neigh-
boring amplitudes. This implies that the last term in
Eqg. (6) would couple pairs of modes hn+kand hk,where
k < AN/2. However Zkis vanishingly small, therefore modes
with lowkwill not be driven by the impedance which
justifies why the last term in Eq. (6) can be neglected
for our model impedance.

As we mentioned before, one can introduce instan-
taneocus coherent frequency,ﬂnﬂL describing evolution
of the n-th mcde within a small time interval {(t,t)
according to the formula

ho(et) =€ Ot Dh e, t=t. 7)

Making a simple adiabatic approximatiocn:
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one can rewrite Eq. (6) as follows
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As was pointed out by Landau,2 an appropriate
integration of Eq.(9) over eleads to the following
dispersion relationship

2 .0

g(el)
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Here,§n=(QMn-m°M% fixes the pole in the complex
¢-plane, while Cis the Landau contour.’ We also replaced

fokﬂ)with a normalized distribution function:
et) = ?f Ple,), (11)

where Nis the number of particles in the ring.
From here on in, we will confine our discussion to
a single mode, h, driven by the model impedance, i.e.
indexnwill be suppressed throughout the rest of the
paper .The summation over all modes in Eq. (5) reduces
to two terms only (nand-n) which combined with the sym-
metry condition, Eq. (3), yields the following formula

2 g% 1) - RE - o) - =
ag(e,t) NecoozRe(Zq;(t)&_h(e,t)} 0. (12)

We can easily generalize the above result to the case
of impedance extending over several, AN, azimuthal har-
monics. Simply, replacing summation over nin Eg. (5) by
integration, carrying it cut and retaining only the
leading, AN/N, order one obtains Eq. (12) with Zre-
placed by ZAN. The last expression is obviously pro-
portional to the area under the peak which assures the
correct scaling of our result.

Now, we make use of the fact that the distribution
func:ion,goux),is uniquely defined by an infinite set
of its moments with respect to &. Introducing the
following notation

i

Gt = | deg®et) e

and (13)

He) = | dehiet) e,

cne can rewrite Eg.(l2) as a simple set of equations of
motion for E—moments.GkuL

{normalization),

g—Go(l)=0 , G, =1
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(14)
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We observe that integrating Eq. (9) along C,after some
algebra and integration by parts, one obtains the de-
sired recursion formula

m-2
2 NZ
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Final substitution of Eg. (15)
to rewrite them as follows

into Egs.{14), allows us

g—em) +2ne w,l, IH/N2Re (Z} =0,

(:ia—Gz(t) +4ne yly [H/N?2Re (£Z°} =0, (16)

eq,|ZI?
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Here, IO-Newomn represents the current in the storage
ring. The time evolution of the coherent mode ampli-
tude, AO)ElHoﬂyNF, is governed by £(t), through the
following equation

—aat-A(t)-2Im{ﬂ(t)}A(t)=0, (17)

which is the immediate consequence of Eq. (7).

One can summarize our scheme by realizing that an
infinite system of coupled equations, Egs.(l6), toge-
ther with Eq.(17) and the dispersion relation, Eqg.(10),
form a closed set of equations which will be further
simplified in the case of a Gaussian beam in the next
section.

G . E T s

For the purpose of our model calculation, we will
start with a Gaussian beam coasting in a storage ring.
We assume that the distribution maintains its initial
Gaussian shape with the time dependent parameters, M=
M() and S = S(t)

go(u,t) = (oum) 172 exp{ - ofu - M)}, (18)

where o=1/(252) and u = €E,

The above assumption is justified by studying the
skewness of the distribution, defined as, OEG3/E°3-M(M2

+3S%. The vanishing of this characteristic guarantees
that the beam, indeed, retains its initial shape. The
following obvious identification
Gy/Eg=M
and (19)
Gy /E°2 =52+ M2,
allows us to simplify the second and third equations of

motion, Egs.(16), by introducing the convenient dimen-
sionless quantities

‘ZEEeIOZVEo
and (20)

x = E/E,.

These equations can be rewritten as

9 M(t) + 2n woAl) 2Re { Z} =0
at

and (21)

9 82(t) + dm w Al) 2 Re { (x-M)Z* } =0.
a
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Now our problem is reduced to a self-consistent
solution of Eq.(17) and Egs.(21) with the coherent
frequency, X, defined implicitly by the integral disper-
sion formula, Eq.(10). This system of nonlinear inte-
gral equations is no longer tractable analytically, ne-
vertheless, its time evolution can be easily iterated
numerically assuming the following initial condition of
our system; M=0, S=Sg,.

Enexgy Qvershoot

As a simple application of our formalism, one can
study nonlinear saturation effects contributing to the
overshoot of the energy spread. Assumed beam-storage
ring parameters are collected in a table below:

I Eo Z/n n

10-3 Amp. 100 GeV 108 Ohm. 104

The above values fix the instability threshold at Sy =
3.33x10%. In order to start with an initially growing
non-uniform mode, one has to select S; below Sy,. The
intrinsic amplitude of the coherent mode, Ay, is
assigned an arbitrary small value of 10-18 which sets
the level of Schottky noise in the system. The result
for SC,=10‘4 is illustrated in Figs.l and 2. One can see
that the coherent mode of an arbitrarily small ampli-
tude, Ay, is growing initially very fast, according to
Eq. (17). Its growth, in turn, causes increase of the
energy spread, 8, and a negative shift of the distri-
bution mean value, M, (energy losses due to the resis-
tive storage ring impedance). This affects the coherent
frequency through the dispersion relation; the new
values of S and M correspond to stronger Landau dam-
ping which results in a succesive decrease of the
growth-rate, Im(Q). Finally, the coherent frequency
crosses into the stable region, Im{Q2) <0, which triggers
rapid decay of the coherent mode. This eventually sta-
bilizes all characteristics S, M, and G since the am-
plitude, A, goes exponentially back to zero. After sa-
turation, both Egs.(21) approach asymptotically their
stationary solutions S, andM,. We notice in passing
that the choice of intrinsic small amplitude, Ay, has

very little influence on the curves presented in Figs.1l
and 2 (as long asAg<<Apgy) . Going to smaller values of

Ay does not change the shape of presented beam chara-

cteristics; it only shifts them in time (it takes lon-
'ger for the instability to develop).
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and the energy shift caused by nonlinear
Landau damping.

The correlation betweenSyand S, has been studied

before; first by Dory by computer simulations and la-
ter by Chin et al.l by approximated analytic treatment
of the Vlasov equation. Applying our formalism, the
stationary values, S_., were calculated numerically for

several values of S,. The resulting energy overshoot

law is compared with the ones previously formulated by
Dory and Chin (Fig.3). Using the least-square-fit
criterion we realize that by reflacing the “square"
exponent in Chin's formula (S, +S°2-28m2) by the

exponent a=1.36, one achieves a good fit to our result.
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Fig.3 Nonlinear Vlasov equaticn approach to the

energy overshoot phenomenon. Comparison with
the existing results.
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