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A simple nonlinear model of a coasting beam 
coupled to a sharp storage ring-impedance is studied in 
the framework of the Vlasov equation. In the case of a 
Gaussian beam this non-perturbative formalism simpli- 
fies to a pair of equations of motion which together 
with the dispersion relation fully describe nonlinear 
saturation. of initially unstable coherent mode. This, 
in turn, provides a stabilizing mechanism (via Landau 
damping) for the overall distribution function. 
Finally, some predictions about the the energy 
overshoot are made. 

Various linear theories give the correct analytic 
description of short-time evolution of coherent insta- 
bilities, e.g. in terms of the initial growth-rate. 
However, this quantity fails to characterize longer 
time scales, i.e., when the groh'ing instability can no 
longer be considered as a small fluctuation of the 
overall particle distribution. In order to go beyond 
short-time evol'Jtion studies of collective modes, one 
has to develop a non-linear description of the beam 
dynamics. 

Following the arguments of Chin et al.l, when the 
initial amplitude of the coherent mode is small and the 
instability does not develop too rapidly, one can 
assume that the nonlinearity modifies the particle 
distribution at a rate much smaller than the linear 
response of the system. Under this adiabaticity assum- 
pzion one can fcrmulate instantaneous dispersion rela- 
tion,' similar to the one employed in the linear 
theories. 

Here we apply a non-perturbative approach to the 
Vlasov equation. The resulting formalism describes zhe 
long-time behavior of driven coherent modes, their 
satcrazion due to the increasing Landau damping 
mechanism, and finally, how they modify the uniform 
part of the density distribution. Some predictions 
about the the energy overshoot are made on the basis of 
presented scheme. 

Csnsider a beam of particles inside a storage ring 
nc,deled by the following statistical density distribu- 
tion function 

f(~~3.t) = foje,t) + c h&t) eien , (1) 
nto 

where8is the azimuthal angle around the ring and E 
represents the er.ergy deviation from its synchronous 
value, Eo.Fcurier series representation guarantees 
perlodicity of the distribution, while the condition 

h&t) = h,,*(G) , (2) 

assures that OCR density distribution is a real quan- 
: i ty. The Vlasov equation which governs f(&,Bf) can be 
written as follows 

- 
* "per at c>c h" t be u,:vcrs;ties R‘?scarcl 2\ssoc“it.ion. J'lC., 11, dF 

ri Coltrd~, *it., -'ie l,.';. kparcr?t"!i Of Energy. 

g l(&,e,t) + 0 $ f(&,f&t) + i 2 f(E,&t) = 0 

Here w=o,+ko~ and k,=-qP-*wo'E, (?<Obelow the trar.si- 
tion). 

The beam environment is modeled by the wake-field 
of the storage ring represented in the frequency domain 
by the coupling impedance Z(w). In turn, the non-uniform 
current coupling induces additional potential,' chang- 
ing the energy of the beam by 

i = -e o. C Z,+,(t) eien , 
rl#O 

xhere (4) 

q#) = e a0 x 2 I de h&J) 

and 

2, = Z(nw,) 

Causality is built intoZ(o)through the Kramers- 
Kronig relationship(Zn*=Z.,)which, together with Eq.(Z), 
assures that i is also a real quantity. Substituting 
Eqs.(l) and (4) ir.to E?.(3) and using orthogonality of 
azirruthal plane waves, one can rewrite the Vlasov equa- 
tion as a set of coupled eqllations of motion for indi- 
vidual azimuthal harmonics. We shall emphasize that the 
equations resulting from OUT non-perturbative treatment 
of the Vlasov equation fully describe nonlir.ear .&ha- 
vior of the beam-storage ring system. They are given by 

g l’(u) e mozoZ,’ c?,‘(t) 2 h&,1) = 0, (5) 

and 

$ h&t) + in@, + k& h&t) - e o. 2, Q,(t) z %t) 

- e w. c Z,,-, q,.,(t) z hmW) = 0 
m*O 

(6) 

One can notice that for a high-Q ixpedance,Z(o), 
its real part is sharply peaked around a single har- 
monics,n-lO',and is extending over $everal,AN, neigh- 
boring amplitudes. This implies that the last term in 
Eq.(6) would couple pairs of modes h,+k and hmk. where 
k<ANR.However Zkis vanishingly srrall, therefore modes 
with lowkwill not be driven by the impedar.ce which 
justifies why the last tern in Eq.(6) can be neglected 
for our model impedance. 

As we mentioned before, one can introduce instan- 
taneous coherent frequency, n,(t), describing evolution 
of the n-th mode within a small time interval (t,t') 
according to the formula 

h&Q’) = e- ’ d’d)(t - “) h&t), t = 1’ (7) 

Making a sirr.ple adiabatic approximaticn: 
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zfO(&t) =tfO(e,Y), t-r, 

Final substitution of Eq.(l5) into Eqs.(l4), allows us 
to rewrite them as follows 

one can rewrite Eq.(6) as follows 

h,(t) = (e coo? i t%t) “:$ & [ ck’h&‘,t). 

As was pointed out by Landau,2 an appropriate 
integration of Eq.(9) over eleads to the following 
dispersion relationship 

d go(d) 
1=(eqJ2-i?fn. Ij ,_a: 

2xnk, z3i c E-S, 
(10) 

Here, &=(Q,/n-o,)/k, fixes the pole in tzhe complex 
E-plane, whileCis the Landau contour. We also replaced 
f’[E,t) with a normalized distribution function; 

s”(E,t) - F fw), (11) 

whereNis the number of particles in the ring. 
From here on in, we will confine our discussion to 

a single mode,h,,,driven by the model impedance, i.e. 
indexnwill be suppressed throughout the rest of the 
paper.The summation over all modes in Eq.(5) reduces 
to two terms only (nand-n) which combined with the sym- 
metry condition, Eq.(3), yields the following formula 

g gO(c,t) - $ e coo 2 Re ( 2’ e*(t) 2 h(E,t) ) = 0 (12) 

We can easily generalize the above result to the case 
of impedance extending over several, AN, azimuthal har- 
monics. Simply, replacing summation over "in Eq.(5) by 
integration, carrying it out and retaining only the 
leading, AN/N, order one obtains Eq.(12) with Zre- 
placed byZAN. The last expression is obviously pro- 
portional to the area under the peak which assures the 
correct scaling of our result. 

NOW, we make use of the fact that the distribution 
function,g'(e,t),is uniquely defined by an infinite set 
of i:s moments with respect to E. Introducing the 
following notation 

G&l) = f= de g’(E,t) Ek 

and (13) 

Hk(t) = j= dE h(e,l) Ek , 

one can rewrite Eq.(12) as a simple set of equations of 
motion for e-moments,Gk(t), 

f G,(t) = 0 > Go=1 (normalization), 

f G,,,(t) - : (ewo)2 2Re ( Z* H,*(t) Hm.,(t) ) = 0, m 2 1. 

We observe that integrating Eq.(9) along C,after some 
algebra and integration by parts, one obtains the de- 
sired recursion formula 

m-2 

H m-, =(cm-l qeq2 s!?-. 1 c kk”‘-k-2 
a"% 2ni k-1 

se, lHm (15) 

f G2(t) + 4re oolo IH,IN1* 2 Re ( 5 z* ] = 0 , 

ewJolZ12 
~G,(t)+2mrreo,lo~Ho~~22Re{~m’1f- -x 

2% 

(16) 

Here, I,LNBu)~QII represents the current in the storage 

ring. The time evolution of the coherent mode ampli- 
tude, A(t) - lHo(t)M1*, is governed by n(t), through the 

following equation 

$ A(t) - 2 Im( n(t) ) A(t) = 0 , (17) 

which is the immediate consequence of Eq.17). 
One can summarize our scheme by realizing that an 

infinite system of coupled equations, Eqs.(l6), toge- 
ther with Eq.(17) and the dispersion relation, Eq.(lO), 
form a closed set of equations which will be further 
simplified in the case of a Gaussian beam in the next 
section. 

For the purpose of our model calculation, we will 
start with a Gaussian beam coasting in a storage ring. 
we assume that the distribution maintains its initial 
Gaussian shape with the time dependent parameters,M- 
M(t) and S = S(t) 

gO(u,t) = (ak)lR exp{ - a(u - M)') , (18) 

where a=1/(2S2) and u = E/E0 
The above assumption is justified by studying the 

skewness of the distribution, defined as, OrGrJEo3-M(M2 
+x?). The vanishing of this characteristic guarantees 
that the beam, indeed, retains its initial shape. The 
following obvious identification 

G,/E,=M 

and (19) 
G2/Eo2=S2+M2, 

allows us to simplify the second and third equations of 
motion, Eqs.(l6), by introducing the convenient dimen- 
sionless quantities 

2 = el,Z/E, 

and 

These equations can be rewritten as 

~M(t)+2xqA(t)2Re(Z)=O 
at 

and 

d S2(t) + 4rr cooA 2 Re ( (x - M)J? ) = 0. 
at 

(20) 

(21) 
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Now our problem is reduced to a self-consistent 
solution of Eq.(17) and Eqs.(Zl) with the coherent 
frequency,x,defined implicitly by the integral disper- 
sion formula, Eq.(lO). This system of nonlinear inte- 
gral equations is no longer tractable analytically, ne- 
vertheless, its time evolution can be easily iterated 
numerically assuming the following initial condition of 
our system; M - 0. S - S,. 

Eruxav overshoot 

A3 a simple application of our formalism, one can 
study nonlinear saturation effects contributing to the 
overshoot of the energy spread. Assumed beam-storage 

ring parameters are collected in a table below: 

IO 63 Z/n n 

1 Oe3 Amp. 100 GeV IO8 Ohm. 104 

The above values fix the instability threshold atSth= 
3.33~10-~. In order to start with an initially growing 
non-uniform mode, one has to selectso below Sth. The 

intrinsic arrplitude of the coherent mode,&, is 
assigned an arbitrary small value of lo-l8 which sets 
the level of Schottky noise in the system. The result 
for so= 10e4 is illustrated in Figs.1 and 2. One can see 

that the coherent mode of an arbitrarily small ampli- 
tude, &, is growing initially very fast, according to 

Eq.(17). Its growth, in turn, causes increase of the 
energy spread, S, and a negative shift of the distri- 
bution mean value, M, (energy losses due to the resis- 
tive storage ring impedance). This affects the coherent 
frequency through the dispersion relation; the new 
values of S and M correspond to stronger Landau dam- 
ping which results in a succesive decrease of the 
growth-rate, Im(Q). Finally, the coherent frequency 
crosses into the stable region, Im(n)<O, which triggers 

rapid decay of the coherent mode. This eventually sta- 
bilizes all characteristics S, M, and G since the am- 
plitude, A, goes exponentially back to zero. After sa- 
turation, both Eqs.(21) approach asymptotically their 

stationary solutions S, andM,. We notice in passing 

that the choice of intrinsic small amplitude, Ao, has 
very little influence on the curves presented in Figs.1 
and 2 (as long as&,<< A,,). Going to smaller values of 

A, does not change the shape of presented beam chara- 
cteristics; it only shifts them in time (it takes lon- 

'ger for the instability to develop). 
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Nonlinear Landau damping mechanism - single 
mode coupling. 
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Saturation of the longitudinal momentum spread 
and the energy shift caused by nonlinear 
Landau damping. 

The correlation betweensoand S, has been studied 

before; first by Dory by computer simulations and la- 
ter by Chin et al.' by approximated analytic treatment 
of the Vlasov equation. Applying our formalism, the 
stationary values, S,, were calculated numerically for 
several values of So. The resulting energy overshoot 
law is compared with the ones previously formulated by 

Dory and Chin (Fig.3). Using the least-square-fit 
criterion we realize that by re lacing the "square" 
exponent in Chin's formula (S, +So*-2Slh*) if by the 
exponent a-1.36, one achieves a good fit to our result. 
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Fig.3 

INITIAL RMS ENERGY SPREAD 

. \ 

-t Nonlnecr Vlcsov Equotior 

- - Chin’s Overshoot Law 

~ Modified Chin’s Low (o=l 36) 

.@0005 O&110 00015 .OCb20 Job25 O&30 

Nonlinear Vlasov equation approach to the 
energy overshoot phenomenon. Comparison with 
the existing results. 
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