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Abstract 

A series of “quasi three-dimensional” computer 
simulations is presented which examines the 
consequences of the transverse variation of the 
longitudinal self-electric-field on the dynamics of a 
coasting beam whose current is assumed to vary slowly 
over a distance long compared with the transverse 
dimensions of the beam system. In this approximation, 
the local longitudinal field is proportional to the 
product of the derivative of the line charge density 
and the local electrostatic potential. The 
Longitudinal dynamics are examined by integrating the 
x-bits cf an ensemble of simulation particles in their 
transverse fields, and using the self-consistent 
potential generated during the simulation, along with 
an assumed value f or the derivative of line charge 
density, to calculate the detailed longitudinal fields 
for integration of the Longitudinal orbits. 

Introduction 

Consideraole progress has been made in 
transporting high current low emittance beams of 
charged particles for applications such as heavy ion 
Seam ignited inertial fusion. Since it is necessary, 
in order to predict the evolution of beam emittance in 
these very low emittance beams, to follow the full 
self-consistent nonlinear dynamics of the beam, 
numerical simul,atlons 1 have Se’zomc2a primary 
theoretical tool. Both simulations and experiments 374 

have now demonstrated the possibility of transporting 
intense beams in alternating gradient transport 
systems with no significant emittance growth. Studies 
of the evolution of beam emittance have, for the most 
part, been strictly valid primarily in the center of a 
long beam, because the longitudinal dynamics can then 
be neglected. Tne longitudinal dynamics of a long 
beam can, in turn, be separately examined if the 
longitudinal variation of the beam is assumed to occur 
on a scale-length long when compared with the 
transverse diT[ensions of the beam system. Even this 
simplyfied model 1s not strictly valid, however, 
beCaJSe individual beam particles are subject to a 
longitudinal force whit? cepends on their transverse 
positon within the beam. 

I 
R-Z simulations have 

shown , for example, that this transverse variation of 
the 1ongitud:nal fcrce can be particularly significant 
when a beam is being slowly bunched. F’or an 
alternating-gradient transport system, however, the 
longitudinal dynamics of an intense beam are 
inherently three-dimensional. The purpose of this 
work :s to present simulations which examine some of 
the details of these dynamics without resorting to 
full three-dimensionaL simulations. 
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Simulation Method 

The electrostatic fields inside a perfectly 
conducting cylinder with constant cross section can be 
represented as the sum of a complete set of transverse 
eigenfunctions each with exponential longitudinal 
dependence. Calculation of the longitudinal field 
associated with each of these transverse modes is then 
straightforward, and the details will be omitted here. 
If the longitudinal current density is assumed to vary 
slowly over a longitudinal distance of the order of 
the transverse dimensions of the beam system, and it 
is further assumed that the shape of the transverse 
current distribution is unchanged, so that the 
coefficients of the various transverse eigenfunctions 
remain in the same ratio, then the local longitudinal 
electric field can be found from: 

E = 
z 

where Q is the local electrostatic potential, ant h is 
the 1ir.e density, so that the current is I = e3ch. 
It is often convenient to express the longitudinal 
field at the center of the beam as: 

EZ = 
31 

-eg z (2) 

so that the “g factor” becomes g = -a/e. In the case 
of the center of a berm with radius a, in a pipe of 

2 3 radius b, g = i- r :a + 2 ln(b/a!. This reduces to 
the familiar g = 1 + 2 ln(b/a) at the center of the 
beam. Any particles not at the center therefore see a 
reduced longitudinal electric field. This reduction 
can be substantial for small b/a. As particles 
execute their betatron orbits, it is the average 
radius ir.tegrated over the orbit which determines the 
longitudinal acceleration in this model. Since 
calculating this average can be quite complex when the 
self consistent nonlinear fields of an intense 
propagating beam are considered, simulations have been 
employed to study the details of this process. 

The numerical method is simple. A two 
dlmensiocal t-arsverse simulation program, SHIFT-XY 
has been modified so that in addition to integrating 
orbits in the transverse plane, the local potential, 
which is obtained at each time step, is multiplied by 
the appropriate constant and used to integrate the 
fields in the longitudinal, z, direction. The primary 
diagnostic which will be presented here, is the 
distribution of particles in longitudinal velocity, 
n(v ). This distribution is calculated by 
acczmulating particles in the range of v to v +6v in 
a series of bins. One hundred bins are Tinearfy ’ 
distributed in the interval between zero and the 
velocity of a test particle held at the center of the 
pipe. The velocity of this test particle, which is 
the maximum velocity a particle can attain, is 
considered a measure of the g-factor of the beam 
system. 
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Simulation Results 

Probably the simplest case which can be discussed 
is a tenuous beam with a Kapchinskij-Vladimirskij 
(K-V) distribution propagating in a uniform focusing 
system. Because the local potential and the density 
distribution both vary quadratically with radius, the 
plot of the fraction of beam particles in any interval 
of longitudinal velocity, n(vz), will initially be 
uniform between the maximum and minimum beam 
velocities, at r-0 and r=a respectively. This is 
indeed observed in the simulations. As the system 
evolves and particles execute their betatron orbits 
each particle samples an average longitudinal field 
which depends on its average radius. If the 
longitudinal field is constant in time, a K-V 
distribution will tend to a delta function in 
velocity, since all particles have the same average 
rad:us. The simJl?tion does in fact show a very rapid 
narrowing after only a few periods. After 25 betatron 
periods, the particles have a velocity distribution 
concentrated in two bins, or a velocity spread of 
crder one percent. 

When an intense beam with an initial K-V 
distribution is simulated, however, the beam rapidly 
goes unstable. After about 15 Larmor periods the beam 
has reached a steady state and the resulting n(v ) is 
almost identical to what is obtained from an ini .8. la1 
semi-Gaussian (uniform in configuration space, 
Gaussian in velocityj distribution with similar 
initial rms parameters. While some further narrouing 
of the velocity spread seems to still be occurring 
after the initial rapid transient, this narrowing is 
on a much slower time scale, and is probably not 
appropriately followed in this nonself-consistent 
modei, 

Fi 8. : . Plot of n(v ), the number of beam particles 
in a given rang; of z-velocities, after 25 
betatrcn periods, for an initially semi-Gaussian 
beam occupying 0.8 of the radius of a uniformly 
focused circular pipe. The horizontal axis is 
calibrated in effective g-factor. The vertical 
axis is the fraction of the beam il each of the 
hundred bins shown. 

Figure 1, is a plot cf the distribution of 
longitudinal velocities, after 25 Larmor periods, of 
an iritially semi-Gaussian distribution in a uniform 
focusing system and in a circular conducting pipe. 
The horizontal s:ale is normalized to the velocity of 
a test particle which is held at the ‘center of the 
system and is therefore a measure of the effective 
g-faclor. For this case, the beam radius is 0.8 of 
the pipe radius, and the g factor measured tils way is 
1.445 compared with a calculated 1.446. The vertical 

axis is labeled with the fraction of the beam in each 
of the hundred bins used to accumulate the number 
density, so that a vertical value of unity would mean 
that all of the beam particles are in that bin. The 
beam intensity can be characterized by a tune 
depression of approximately a factor of ten. 

Details of the longitudinal benavior, even in the 
simplified case under consideration here, can get 
considerably more conplex when alternating gradient 
systems are considered. The beam is generally 
elliptical and varies during the focusing period, 
making even the behavior of a particle at the center 
tedious to calculate. A tenuous K-V beam in a Ehin 
lens focusing system with a phase advance of 60 per 
cell, and with the major axis of the ellipse at lens 
center (the maximum extent of the beam) of 0.8 of the 
radius of a circular conducting pipe, is found to 
have a g-factor, for a particle held at the center, cf 
1.97. This would correspond to a circular beam of 
radius about 0.6 times radius of the pipe, which is 
between the major and minor radii of the elliptical 
cross seztlon at the center of a lens. Otherwise tnr 
behavior of this beam is very similar to the circular 
beam in the circular pipe. All of the beam particles 
rapidly acquire velocities in a very narrow range. 

0.1 1 
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Fig. 2. The distribution n(v ), after 50 magnet 
periods, for an initiall? semi-Gaussian beam in 
an alternating-gradient trangport system with 6C 0 

phase advance depressed to 6 oy space charge. 
The major axis of the ellipse is 0.8 of the 
circular pipe at the center of a lens. 

Figure 2 shows the distribution, n(vz), of an 
initially semi-Gaussian beam in a thin lens 
alternating gradient transport system pith 60’ phase 
advance depressed by space charge to 6 . This curve 
is quite similar to what is obtained in a uniformly 
focused channel with a similar g-factor. The major 
consequence of the alternating gradient focusing 
seems, therefore, to occur as a consequence of the 
change in average radius resulting from the charging 
elliptical shape of the beam during each period. 

A greater degree of complexity can be introduced 
if the conducting boundary consists of the electrodes 
in an electrostatic quadruple system. Figure 3 shows 
n(v ) after traversing 50 magnet periods of a 60 
altgrnating-gradient transport system w:th a faceor of 
ten tune depression. The beam major axis is at 0.8 of 
the distance to the electrostatic quadruples. The 
quadruple electodes, which are semi--:rcular with 
radius 0.267 times the separation of their centers, 
were chosen to be the same as ir. previous sinulation6, 
and corresponds to the design of the LBL Single Beam 
Transpcrt Experiment. Some increase In the g-fact’zr 
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is observed compared to the circular boundary. This 
increase is presumably due to the distortion of field 
lines near the electrodes. The primary difference in 
behavior, as compared with the previous case of the 
same focusing forces, bu: a circular pipe, appears to 
be a consequence of the distortion of the beam shape. 
The edges of the beam are pulled tosrard the 
elect-odes, giving the beam a diamond shape and giving 
the beam distribution a greater spread in average 
radii as the outermost particles are pulled toward 
larger average radii and lower average g-factors. 

0. I 1 

0.0 2.13 
Z-VELBCITY 

Fig. 3. n:v j for a 60 ’ alternating-gradient 
transpo?t system depresses to ho, but with the 
major axis of the ellipse at 0.8 of the distance 
to a set of conducting electrostatic quadruples. 
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F:g. 4. n:v ), after 50 magnet periods, of an 
initially semi-Gaussian beam in the presence of 
electrostatic quadruple electrcdes, and an 
initial offset of 0.05 times tne distance between 
electrodes at an angle of 45’ relative to the 
direc’ion of the electrodes. 

Figure 4 is an illustration cf the effect on the 
longitudinal dynamics of off-centering the beam. The 
beam in Fig. 3 is given an initial offset of magnitude 
of half of tie distance fron the ed e of the beam to 

8 the iclcctrode but at an angle of 45 . The primary 
consequence is that some of the beam particles appear 
to be pulled off the beam ant close to the electrodes 
and so see a reduced longitudinal field. 

Conclusions 

While it is difficult to specify precisely the 
extent of the validity of the “quasi three- 
dimenslnnal” model used here to calculate the 
transverse variation of the longitudinal dynamics, 
some concllisions Fare still possible. 

The method used assumes a particular model for 
the longitudinal fields, but iJhat,ever approximation is 
used for the longitudinal fields, the self-consistent 
transverse simulations are a good model for estimating 
the distribution of average radii during betatron 
orbits in a variety of transport system geometries. 
For example the similarity of behavior of the 
alternating-gradient and uniformly focused transport 
systems is another of many illustrations that gave 
emerged that uhen phase advances well below 90 are 
employed, the substitution of a smooth focusing force 
averaged over the magnet period appears to be a good 
representation of beam behavior. A consequence of 
this is the argument that the longitudinal behavior of 
an alternating-gradient transport system car be 
approximated by assuming an azimuthally-symmetric 
geometry so that r-z simulations are probably a good 
approximation to the longitudinal dynamics. 

Tne large spread in average radii observed for 
reasonable parameters does, however, argue that those 
circumstances where transverse nonuniformities of the 
longitudinal forces can have a significant impact 
should be investigated further. 
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