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IMPEDANCES OF BELLOWS CORRUGATIONS

King-Yuen Ng
Fermi National Accelerator Laboratory', Batavia, IL 60510

I, INTRODUCTION

The longitudinal and transverse coupling impedances of in-
ner bellows can be derived by running? TBCI and taking Fourier
transforms™®, However, the eventual impedance plots are only
very approximate because the results are usually marred hy er-
~urs due to the finite mesh size and the truncation of the wake
sotentials. It has been reported that TBCI gives results in con-
fict with other codes*® like KN7C and TRANSVRS. Also, a
long wake for a simple pill-box cavity even diverges in the dipole
mode. In this paper, we want to present a physical understand-
ing of the impedance plots and try to gather some formulae so
that the main features of the impedances can be approximately
derived without the actual running of any tire-consuming codes.
Similar attempts have also been made in Ref 2.

iI. ONE CORRUGATION
Counsider one rectangular corrugation of the bellows having
a depth A wud half width g. Henke® has studied the problem
in the frequency domain, which involves the solution of an infi-
nite matrix equation. However, when g/b < 1, where b is the
bean pipe radius, the longitudinal impedance can be simplified

wremendously’:

Z () = 9o {2.1)
wbIZ(b)D
where
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In the above, k = w/c, Zy = 377 Q, Iy is the modified Bessel
function of order zero, b = bk/~v3. 4 and 8 are the relativistic
velocity parameters of the beam particles. In the summations,
3, = \fﬂk:b'l - 3% and a, = \,,”]'g, - k2b?, where j, is the s-th zero
of the Bessel function Jy and jys is the zero that is just larger or
equal to kb. Also, R(kb) = Jo(kb)No(kd) -~ Jo(kd)No(kb), where
d = b+ A and Jy and Ny are respectively the Bessel function
and Neumann function of order zero. To have a deeper insight,
let us take the limit kb > 1 and g/b - 0; D is simplified to

S oc
D= - jeotkA - Z e E et e
N L LR S RV A S
Here. in reality. the second summation cannot go to infinity
because the expansion will break down as soon as a,9 ~ 1.

The zeroes of Im D determines the peaks of resonances. If
the summations are neglected. from Eqg. (2.3), sharp resonances
occur at kA = 7/2, 37,2, etc.: or when the depth & is an
odd number of the quarter wavelength. Take the case of a
corrugation depth of A = 5 mm, cot kA gives resonances at
15.45,75,... GHz. Thus, usually only the first one will be vis-
ible to the beam. The first summation in D represents all the
above-cutoff modes of waves that can propagate along the beam
pipe so that the sharp resonances will be damped heavily. The

"Operated by the Universities Research Association, Inc., under con-
tract with the U. 8. Department of Energy.

1054

second summation which is imaginary represents all the below-
cutoff modes that attenuate along the beam pipe. Its effect can
be thought of as fields clinging to the opening of the corrugation,
thus making the corrugation depth A effectively longer and the
resonance frequencies smaller. Figure 1 shows the plot of Z; due
to a corrugation of depth A/b = 0.1 and half width g/b = 0.025.
We see a broad resonance with the resonant frequency shifted
from kb = 7b/A = 15.7 to ~ 13. We also see notches located
exactly at kb = j,, the zeroes of Jy or the cutoff frequencies
of the pipe. These notches are evident from Eq. (2.3} where
only one term in the summation will contribute. Physically,
since 2g < A, the wavelength, only the z-independent mode is
favored in the region of the corrugation. At one of the cutoff
frequencies, the mode that is just allowed is z-independent and
is therefore favored and dominates all others. This mode will
not penetrate into the corrugation at all and. as a result, the
beam does not see the corrugation. The plot also shows some
sharp resonances just before the cutoff dips at frequencies be-
low the broad resonance peak. According to Henke, they belong
to some well-trapped modes in the region of the cross section
enlargement,
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Figure 1: Real part of the longitudinal impedance of one corrugation
of a bellows with half width g/b = 0.025 and depth A/b == 0.1 .

For & bellows with many corrugations, we expect the notches
and sharp peaks to smooth out. This happens because the to-
tal length of the bellows is no longer negligibly small compared
with the beam pipe radius; so the z-independent mode is no
longer favored. With the corrugations closely spaced, fields will
cling across several corrugations resulting in further lengthen-
ing the effective corrugation depth and thus further lowering
the broad-band frequency. The overall picture of the longitudi-
nal impedance is therefore a broad band resonance derived from
the first resonance in the corrugation. We can characterize it by
the resonant angular frequency w,, the shunt impedance K| and

the quality factor @: 1.e.,

Z(w) = . (24)

1-jQ (= - =)
t is a good approximation to assume that the position of
the broad band and its @-value are not altered much. They can
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therefore be estimated using Eq. (2.2) and possibly Eq. (2.3):

_kb_dimD
2ReD d(kb) .

kb=k, b

Im D(k,b) = 0, Q ~ (2.5)
which gives @ from 3 to 8 for the examples studied below. We
should not expect this formula to be accurate at all due to the
notches and sharp peaks, but it does tell us that Q ~ 5.

The transverse impedance, on the other hand, behaves sim-
ilarly and can be expressed as

w RJ.
ZJ~ (u) R S

wr-gefs-z)

The position of the broad band should be roughly the same as
This can be understood

(2.6)

that of the longitudinal impedance.
bv considering the bellows corrugation as a radial transmission
to ¢y (1 4A]~ - (1’27rb) che (27rb] (4A) in most cases,
the resonant frequency is dominated by A only.

Inner bellows of various sizes are examined. The results are
shown in Table 1. The TBCI values are for 5 corrugations while
the Henke values are for one only using Eq. (2.5). We see that
the TBCI values are indeed roughly the same for the longitudinal
and transverse situations, but they are slightly lower than the
Henke values as expected. The agreement is roughly 10% except
for Case 11 which has a corrugation depth of only 0.25 cm,
the most shallow among the others. Therefore, the resonant
frequency will be very sensitive to the lengthening of the depth
by the fields clinging to the opening. Comparing Cases 8, 14 and
15. we learn that the change in resonant frequency f, depends
very weakly on the corrugation gap g. A 100% increase in ¢
lowers f, by 9% only. If this dependence on g is neglected, we
can obtain a fitted relation shown in Fig. 2,

A -0.948
kb= 1.37 (7{) ,

where k, = 27 f, /c. The fit is a very good one except for Cases
11 and 13. The former may be a result of the shallowness of the
corrugation. The latter is the one with A/b = 0.5 which is the
biggest of all cases. Thus. we may conclude that Eq. (2.7) holds
for corrugation with A/é < 0.5 and A > 0.25 c¢m. Similar fit
for Z_ has been done? using TRANSVRS but the results differ
from the above. This empirical formula can also be written as

kA = 1.37 (%)

Since the exponent is small, Eq. (2.8) just says that the fields
due to the cutoff modes lower k, A from #/2 = 1.57 to 1.37.

II1I. LOW-FREQUENCY BEHAVIORS
The ratios of shunt impedances to quality factors are re-
lated to the low-frequency behaviors of the impedances. From

(2.7)

0.052
(2.8)

Eqgs. (2.4) and (2.6), we get, at zero frequency,
]m Z; 27!’R‘\ R
- o= ! and Im Z = e, 31
;T we ) i

On the other hand, from the low-frequency magnetic field
trapped inside a narrow cavity, we obtain®,
Z 2gZ0 297, 8% -1

- InS and Z :]’_'_.__.,‘,7,’

7 - bt S (3-2)

where Z; = 377 0, R the ring radius, and § = 1 + A/b. These
formulae are compared with the TBCI results in Table 2.

Case No. b A ; 2g frin GHz

L em | cm | cm | Henke | TBCI(]]) [ TBCI{)
1 [ 1507050 015 133 | 123 | 123
2 1200 050015 122 1.5 | 122
3 275 050|015 129 11.8 11.6
4 3.25 10,50 | 0.15 | 12.2 11.6 11.9

5 1350 ’ 0.50 0.15 | 13.1 1.7 118

{ 6 ‘ 450 1050 0.15] 121 | 116 11.8
7 6.15 [ 0.50 | 0.15 | 13.1 1.4 | 116

- 6.50 1 0.50 | 0.15 | 12.6 11.4 11.6
9 8.00 | 0.50 | 0.15 = 12.3 116 113

|10 200 [ 0.50 ( 0.20 . 11.9 1.2 | 115

Ion | 200 0.2510.15 | 24.1 21.0 21.0
12 ;200075 r 0.15 ’ 9.4 8.3 8.3
13 2000100 015 7.4 7.0 7.0
14 ‘ 6.50 | 0.50 0 20 | 123 | 108 10.9
15 650|050 030 120 | 102 10.3

i

Table 1: Resonance frequencies of various bellows configurations.

IV. ENERGY LOSS
For a Gaussian bunch of RMS length oy, the rate of loss of
energy is proportional to the energy loss factor & defined as

1 = rey2
- / dwe 1ot Re 7. (). (4.1)
7 Jo
With Eq. (2.4) as the expression for the longitudinal impedance,
Eq. (4.1) can be integrated in the closed form to give for one
corrugation of the bellows®,

[ Case ' b @ A 2g | ImZ)/f (/GHe) T ImZ_ (Q/m)

| cm | em | cm  Eq. (3.2) | TBCl | Eq. (3.2) | TBCI

© 1 [150 050015 0542 | 0.540 224 199
2 2.00 | 0.50 | 0.15 0.410 0.410 98.8 89.6
3 2.75 | 0.50 : 0.15 0.315 0.310 39.4 36.0
4 3.25 | 0.50 | 0.15 0.269 0.270 24.2 22.4
5 3.50 | 0.50 ; 0.15 0.252 0.256 19.5 18.4
6 4.50 : 0.50 | 0.15 0.199 0.202 9.33 8.88
7 6.15 0.50 | 0.15 0.150 0.147 3.71 3.54
8 6.50 . 0.50 | 0.15 0.140 0.140 3.15 3.7
9 8.00 | 0.50 | 0.15 0.117 0.117 1.70 1.64
10 | 2.00 | 0.50 ; 0.20 0.561 0.556 | 132 116
11 2,00 | 0.25 | 0.15 0.222 0.221 ;| 52.8 46.7
12 1 2.00 | 0.75! 0.15 0.600 | 0.600 | 139 124
13 1 2.00! 1.00 | 0.15 0.764 | 0.720 173 155
14 | 6.50 | 0.50 | 0.20 0.186 | 0.190 4.20 3.94
15 | 6.50 | 0.50 | 0.30 0.280 0.277 6.30 5.70

Table 2: ImZ)/f and Im Z, per corrugation at zero frequency.
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Figure 2: A fit of the resonance position as a function of A/b.
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Ryw,

_ R (1 - ;Eg)wzeizw(zn, (4.2

k
1= 20a 2
with a = w,0¢/c, 2 = (\/T- 1,;4(22 + J/2Q)a and w(z) the
complex error function. For a very short bunch, a — 0, we have
w(z) =1+ 25z/\/m — 2% or

b = R”w, 1- _?a
ST V@)’

which is nothing but the area under one resonance divided by
r. For a very long bunch, @ — oo, we have w(z) = j(1 +
1/22%))\/7z; so

(4.3)

ko = Ryw,
Po4ynQad

The smallness of k; is due to the exponential factor and the fact
that Re Z) starts off from zero and rises only near the broad
resonance.

For the Superconducting Super Collider (SSC), ¢, = 7 em.
If the corrugations have a depth of 0.5 ¢m, period 0.30 cm and
are of inner bellows configuration having a beam pipe radius of
1.65 c¢m, the broad resonance is at ~ 12.3 GHz, according to
Eq. (2.7). Using Bgs. (3.1) and (3.2), one gets R|/Q = 6.14 N
for each corrugation. The parameter a = w,o¢/c = 18.0, so
Eq. (4.4) can be used. The energy loss is therefore ky = 1.14 x
107/Q 0/sec for one corrugation. In the SSC, there are 1.2 km
of bellows or 400,000 corrugations and 17,280 bunches each with
7.3 x 10° particles. The revolution frequency is 3.614 kHz. Thus,
the energy loss is 389/Q or 78 watts if Q ~ 5.

For the transverse impedance, there is a similar loss factor

(4.4)

1 * —{weg/c)?
k. = m,/w dwZ, (w)e~woeld? (4.5)
where a Gaussian bunch has been assumed. Using Eq. (2.4}, the
integral can be done in the closed form:

_ R_LUJ, 1 -1z
k. = 20 (1~—~) Imw(z).

For a very short bunch, we get k; = R w,a/{/7Q. When the
bunch is very long, k. = R w,/(2y/7Qc). The general shapes
of ky and k, are plotted in Fig. 3, and listed with the TBCI
results in Table 3. The agreement is satisfactory.

(4.6)

Case b A 2g ] ky k.
) jcm cm  em | Eq (4.2) | TBCI Eq. (4.6) | TBCI
(71 150 050015 0782 | 0.700 | 446 | 454
. 2 1200|050|015| 0591 |0.534 19.9 18.4
3 | 275/050/0.15] 0454 0390, 7.86 7.06
4 325 050!015! 0388 0332 4.87 4.30
5 1350 050]0.15| 0363 . 0312 ] 3.92 3.46
6 | 4.50 \ 0.50 | 0.15 | 0.287 | 0.244 1.86 1.66
7 [ 6.15 | 0.50 | 0.15 | 0.216 | 0178 | 0.73 0.66
& :6.50:050[015. 0201 |0.169  0.62 0.56
9 [800|050)|0.15 0.168 ‘ 0.139 | 0.33 0.30
10 | 2.00 050|020 0.805 | 0696 | 256 23.4
11 200025015 0.177 \ 0.164 13.1 11.5
| 12200 075 015 0707 | 0650 1838 115
| 13 1200100 0.15| 0.745 | 0.666 18.4 19.5 |
14 J 6.50 | 0.50 | 0,20 0.263 | 0.220 , 0.78 0.70 |
15 650 050 0.30 | 0.386 f 0.308 | 1.10 0.95

Table 3: k| in 30" Q/sec and k. in 10! 2/m/sec per corrugation.
RMS bunch length is 4 mm and @ = 5.
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o= mrcz/c
Figure 3: Plot of k) and k; versus a = w,0¢/c.

V. MANY CORRUGATIONS

We have examined the situations of 1, 5, 20 and 40 corruga-
tions each of depth A = 0.5 cm, period 4¢g = 0.3 cm, with beam
pipe radius b = 2.0 ¢m, and RMS bunch length o; = 4 mm. The
TBCI results are listed in Table 4. We see that resonant fre-
quencies are lower with more corrugations as anticipated. The
transverse loss factor k. also decreases with more corrugations.
However, it is interesting to see that Im Z:/f, ImZ_ and k
are almost independent of the number of corrugations. These
are in fact the quantities used in the study of single-bunch and

coupled-bunch instabilities as well as parasitic heating. In order
words. we can safely use the formulae developed in the previous
sections to compute these quantities per corrugation, multiply
them by the number of corrugations in the ring, and use the final
results in the stability criteria and parasitic energy loss formula.

n T J i [Imayf [ k| K
GHz | GHz | 1/GHz | /m | 10'!()/sec | 10'10/m/sec |

1| 12.1 | 18.2 0.413 85.8 0.561 22.3

11.5 | 12.2 0.410 89.6 0.534 19.9

20 | 10.0 - 10.3 0.407 83.4 0.520 16.7

@1 90 | 97 | 0414 | 865 | 0530 16.0

Table 4: The resonant frequencies, impedances at zero frequency and
loss factors for n = 1, 5, 20, 40 corrugations. All values shown are per
corrugation. Each corrugation has a depth of 5 mm and period 3 mm.
The beam pipe radius is 2 cm and the RMS bunch length 4 mm.
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