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1. INTRODUCTION 

‘i‘li~ lorigitllr~inal anti transverse coupiing impedances of in- 
~t’r i~ellows can 1~ derived by running] TBCI and takilig Fourier 
I ~,.:15f‘orrrl.~-” However. the eventual impedance plots are oni] 

,c’r~- ;3!)prosiiuiitr brcausr the results are usually marred 11y er- 
~~.~r~ tiucs IO thp finite mrsh size and the truncation of the wake 
-:otrntials. It has bepn reported that TBCI gives results in ro11- 
flict \vith other codes4,5 like KS7C ar.d TRANSVRS. Also. a 
long wake for a simple pill-box cavity even diverges in the dipole 
mode. In this paper. we want to present a physical understand- 
mg of the impedance plots and try to gather some formulae so 
that the main features of the impedances can be approximately 
derived without the actual running of any time-consumingcodes. 
Similar attempts have aiso been made in Ref 2. 

II. ONE CORRUGATION 

Consider one reclangvlur corrugation of the bellows having 
il tLI.::, .? ,,,,ti half width y. Henke’ has studied the problem 

:;I the frcqurnry domain. whic!l inToIves the solution of an in& 
-r!te matrix equation. FIowrver. when g.‘b < 1. where b is the 
I,I~~.III pipe radius, the longitudinal impedance can be simplified 
.rr111e11&>uslv7: 

g&l 
’ iA’) = &$,-n’ i2.g 

,vhere 

(2.2) 

In the above. k = w,‘c, Zo = 377 R, 10 is the modified Bessel 
function of order zero, i, = bk!‘rfi. 7 and fi are the relativistic 
velocity parameters of the beam particles. In the summations, _--- -. 
.3, = L k”b’ juZ, and a, = I;$~ k2bz: where & is the s-th zero 

of the Bessel function Ja and &OS is the zero that is just larger or 
qua1 to kb. ,ilso. R(kb) = J0(kb)3’o(kd) ~. Jo(kd)4Vo(kb), where 
d = b - J and Jo and :VO are respectively the Bessel function 
and Seurnanr~ function of order zero. To have a deeper insight, 
;rt us take the limit kb S> 1 and g.‘b -+ 0; D is simplified to 

s 
D 2 ,; cot k4 .- c -G!.k&-.z $ F ~-- -- ?iks ------. (2.3) 

a:~ v kzb? ~ j& s-s. I ,/& _ k’b: 

iit>re. in rcall:y. rhe second summation cannot go to infinit: 
i~ecause the expansion will break doTvn as soon as n,g = 1. 

The zeroes of Im D determines the peaks of resonances. If 
rhe summations are neglected. from Eq. (2.3). sharp resonances 
occur at k.l =: ~‘2, 3~ 2, etc.: or when the depth 2 is an 
odd number of the quarter wavelength. Take the case of a 
corrugation depth of LL : 5 mm, cot kil gives resonances at 
15.45.75,. , GHz. Thus, usually only the first one will be vis- 
ible to the beam. The first summation in D represents all the 
above-cutoff modes of waves that can propagate along the beam 
pipe so that the sharp resonances will be damped heavily. The 

‘Operated by the Universities Research Association, Inc.: under con- 
tract with the Lr. S. Department of Energy. 

second summation which is imaginary represents all the beiow- 
cutoff modes that attenuate along the beam pipe. Its effect can 

be thought of as fields clinging to the opening of the corrugation. 
thus making the corrugation depth 4 effectively longer and the 
resonance frequencies smaller. Figure 1 shows t,he plot of Z;I due 

to a corrugation of depth A ‘b = 0.1 and half width g, b = 0.025. 
\Ve WC a broad resonance with the resonant frequency shifted 
from kb -7 nb,‘a = 15.7 to - 13. Ll’e also SW notches located 

c,xactly at kb =- jos, the zeroes of Ju or the cutoff frequencies 

of the pipe. These notches are evident from Eq. (2.3) where 
only one term in the summation will contribute. Physically. 
since 2g c% X, the wavelength, oniy the z-independent mode is 

favored in the region of the corrcgation. r5t one of rhe cutoff 
frequencies, the mode that is just allowed is r-independent and 

is therefore favored and dominates all others. This mode will 
not penetrate into the corrugation at all and. as a result, the 
beam does not see the corrugation. The plot also shows some 
sharp rrsonancrs just before the cutoff dips at frequencies he- 
low the broad resonance peak. According to Henke, they belong 
to wme well-trapped modes in tllc region of the cross section 
rnlargemrnt 

T- 

i I I ! ; 
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Figure 1: Real part of the longitudinal impedance of one corrugation 
of a bellows with half widt,h g/b = 0.025 and depth ,!!b -- 0.1 

For a bellows with many corrugations, we expect the notches 
and sharp peaks to smooth out. This happens because the to- 
tal length of the bellows is no longer negligibly sma!l compared 
with the beam pipe radius; so the z-independent mode is no 
longer favored. With the corrugations closely spaced. fields will 
cling across several corrugations resulting in further lengthen- 
ing the effective corrugation depth and thus further lowering 
the broad-band frequency. The overall picture of the longitudi- 
nal impedance is therefore a broad band resonance derived from 
t,he first resonance in the corrugation. We can characterize it by 
the resonant angular frequency w,, the shunt impedance RI, and 

The qualit>- factor Q: z.E.. 

I,,(;,) _ -. .~ !“. --.~, 
l--r&(2 zj 

It is a good approximation TO assume that the position of 
the broad band and its &-value are not altered much. They can 
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therefore he estimated using Eq. (2.2) and possibly Eq. (2.3): f. in GHz I 
-m&aJmj .EifF 

. I 
12.2 11.5 12.2 
12.9 11.8 11.6 

Case No. b , A 

C- 

10 2.00 0.50 
11 2.00 0.25 
12 2.00 0.75 

I 13 ( 2.00 1.00 
14 6.50 0.50 
15 6.5010.50 

ImD(k,b) L 0. Q-- 
kb dimD 

2 ,QD dP4 ,kb=li,b ’ (2.5) 

which gives Q from 3 to 8 for the examples studied below. We 
should not expect this formula to be accurate at all due to the 

notches and sharp peaks, but it does tell us that Q - 5. 
The transverse impedance, on the other hand, behaves sim- 

ilarly and can be expressed as 

12.2 I 11.6 
13.1 11.7 
12.1 ~ 11.6 
13.1 11.4 
12.6 11.4 
12.3 / 11.6 

11.9 
11.8 
11.8 
11.6 
11.6 
11.3 
11.5 
21.0 
8.3 
7.0 

10.9 
10.3 

W) 
w 

Z,(w) = ;:, i-- jQ4; - E) ’ 0.20 11.9 
0.15 24.1 
0.15 9.4 
0.15 j 7.4 
0.20 12.3 
0.30 12.0 

11.2 
21.0 
8.3 
7.0 

10.8 
10.2 

The position of the broad band should be roughly the same as 
that of the longitudinal imprdance. This can be underst,ood 
by considering the bellows corrugation as a radial transmission 

line. The resonant frequency is therefore roughly proportional 

to c\‘(l 4A)? * (1'12xb)~. Since (2nb)’ > (4A)’ in most cases, 
the rr~onant frequency is dominated by A only. 

Inner bellov,~ of various sizes are examined. The results are 
shown iii Table 1. The TBCI values are for 5 corrugations while 
the Henke values are for one only using Eq. (2.5). We see that, 
the TBCI values arc indeed roughly the same for the longitudinal 
and transvcrsc situations, but they arc slightly lower than the 

Henkr values as expected. The agreement is roughly lo%, except 
for Case 11 which has a corrugation depth of only 0.25 cm, 
the most shallow among the others. Therefore, the resonant 
frequency will be very sensitive to the lengthening of the depth 
by the fields clinging to the opening. Comparing Cases 8, 14 and 
15. we learn that the change in resonant frequency f, depends 
very weakly on the corrugation gap g. A 100% increase in g 
lowers fV by 9% only. If this dcpendencc on g is neglected, we 
can obtain a fitted relation shown in Fig. 2, 

k,b = 1.37 ; 
i ) 

-0.948 

, (2.7) 

where k, : 2xf, !c. The fit is a very good one except for Cases 
11 and 13. The former may be a result of the shallowness of the 
corrugation. The latter is the one with A ,‘b = 0.5 which is the 
biggest of all cases. Thus. we may conclude that Eq. (2.7) holds 

for corrugation with A ‘b i 0.5 and A > 0.25 cm. Similar fit 
for Z- has been done’ using TRAXSVRS but the results differ 
from the above. This empirical formula can also be written as 

Table 1: Resonance frequencies of various bellows configurations. 

IV. ENERGY LOSS 
For a Gaussian bunch of RMS length (J!, the rate of loss of 

energy is proportional to the energy loss factor k defined as 

k, L- : /= d.a~(L”~‘C~z Re Z,, (x). (4.1) 

\Yith Eq. (2.4) as the expression for the longitudinal impedance, 
Eq. (4.1) can be integrated in the closed form to give for one 
corrugation of the bellowsg, 

I&Z 
E* 

224 
98.8 
39.4 
24.2 
19.5 
9.33 
3.71 
3.15 
1.70 
132 

52.8 
139 
173 

4.20 
6.30 

4’GHz) 
TBCI 
0.540 
0.410 
0.310 
0.270 
0.256 
0.202 
0.147 
0.140 
0.117 
0.556 
0.221 
0.600 
0.720 
0.190 
0.277 

8.88 
3.54 
3.7 

1.64 
116 

46.7 
124 
155 

3.94 
5.70 

1 

2.75 0.50 0.15 
3.25 0.50 ! 

i 
0.15 

3.50 0.50 
I 

0.15 
4.50 0.50 0.15 
6.15 0.50 0.15 
6.50 I 

8.00 
2 .oo 
2.00 
2.00 
2.00 
6.50 
6.50 i 

J.50 0.15 
0.50 0.15 
0.50 0.20 
0.25 ~ 0.15 
0.75 ! 0.15 
1.00 0.15 

1 

0.50 0.20 
0.50 0.30 

0.315 
0.269 
0.252 
0.199 
0.150 
0.140 
0.117 
0.561 
0.222 
0.600 
0.764 
0.186 
0.280 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 / 
14 

i 15 i 0.052 

. 
Table 2: Im ,?,I,/ j and Im ZL per corrugation at zero frequency. 

Since the exponent is small, Eq. (2.8) just says that the fields 
due to the cutoff modes lower k,A from 7r/2 = 1.57 to 1.37. 

III. LOW-FREQUENCY BEHAVIORS 
The ratios of shunt impedances to quality factors are re- 

lated to the low-frequency behaviors of the impedances. From 

Eqs. (2 4) and (2.6), we get, at zero frequency, 
kb 

Im Z 1 ZTR,~ -=- 
f f&Q 

and (3.1) 

On the other hand. from the low-frequency magnetic field 
trapped inside a narrow cavity, we obtain*, 

Z 
-1 .2gz, Ins 

f c 
and _ z = J 2gz! Sk! 

nb2 S2 - 1’ (3.2) 0.2 0.5 1.0 

A/b 
ivhere & 7: 377 R, R the ring radius, and S = 1 + A/b. These 
formulae are compared with the TBCI results in Table 2. Figure 2: A fit of the resonance position as a function of A/b. 
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-l/2 

JY4Z)ll (4.2) 

with o = ;cjruE~c, z = (,/l - l/4&* i- j,‘ZQ)o and w(z) the 
complex error function. For a very short bunch, a -+ 0, we have 
W(Z) zz 1 + 2jzj’t’5 - 2’; or 

which is nothing but the area under one resonance divided by 
T. For a very long bunch, cy ---f co, we have u:(z) = j(1 + 

l/29) l,,5z; so 

kl = Rll wr 
4,,‘?Qh3 ’ 

(4.4) 

The smallness of li, is due to the exponential factor and the fact 
that ReZi, starts off from zero and rises only near the broad 
resonance. 

For the Superconducting Super Collider (SSC), cre = 7 cm. 
If the corrugations have a depth of 0.5 cm, period 0.30 cm and 
are of inner bellows configuration having a beam pipe radius of 
1.65 cm, the broad resonance is at - 12.3 GHz, according to 
Eq. (2.7). Using Eqs. (3.1) and (3.2), one gets Rii/Q = 6.14 R 
for each corrugation. The parameter a = w,ut/c = 18.0, so 
Eq. (4.4) can be used. The energy loss is therefore ki/ = 1.14 x 

107/& R/set for one corrugation. In the SSC, there are 1.2 km 
of bellows or 400,000 corrugations and 17,280 bunches each with 
7.3 x 10’ particles. The revolution frequency is 3.614 kHz. Thus, 

the energy loss is 389/Q or 78 watts if Q - 5. 
For the transverse impedance, there is a similar loss factor 

k, = -L 2~3 J_“, dwZ&)e-~““‘~‘)2, 

where a Gaussian bunch has been assumed. Using Eq. (2.4), the 
integral can be done in the closed form: 

-112 
Im W(2). 

For a very short bunch, we get ki = R,w,a/fiQ. When the 
bunch is very long, k- = RLw,/(2d’%Qa). The general shapes 
of k/i and k, are plotted in Fig. 3, and listed with the TBCI 
results in Table 3. The agreement is satisfactory. 

Case ’ 0 

L Cm 

1.50 
2.00 
2.75 
3.25 
3.50 
4.50 
6.15 
6.50 
8.00 
2.00 
2.00 

l--r- 
! 2 
/ 3 

~ 4 
5 
6 
7 
8 
9 
10 
11 

I ‘2 2.00 
1 13 ~ 2.00 

14 6.50 
15 6.50 

1.00 0.15 
0.50 ~ 0.20 
0.50 I 0.30 -... --L- l- 

0.388 
0.363 
0.287 
0.216 
0.201 
0.168 
0.805 
0.175 
0.707 
0.745 
0.263 
0.386 

0.332 ~ 4.87 
0.312 ~ 3.92 
0.244 1.86 
0.178 ~ 0.73 
0.169 0.62 
0.139 1 0.33 
0.696 25.6 
0.164 13.1 
0.650 : 18.8 
0.666 i 18.4 
0.220 0.78 
0.308 1.10 - -~ .-__ 

I - 

18.4 
7.06 
4.30 
3.46 1 
1.66 
0.66 
0.56 
0.30 
23.4 
11.5 
11.5 
19.5 i 
0.70 i 
0.95 

Table 3: k( in 10” R,/sec and kl in 10” R,/m/sec per corrugation. 
R41S bunch length is 4 mm and Q = 5. 

- 
A 

cm 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.25 
0.75 

29 
cm 

0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.20 
0.15 
0.15 

-I- 

f 

k;; k. 
Eq. (4.2) 1 TBCI Eq. (4.6) 

0.782 
0.591 

i yJ; i ;;I; 

0.454 0.390 I 7.86 

Figure 3: Plot of kll and kl versus Q = wru~/c. 

V. MANY CORRUGATIONS 

3 

We have examined the situations of 1, 5, 20 and 40 corruga- 
tions each of depth A = 0.5 cm, period 4g = 0.3 cm, with beam 
pipe radius 6 = 2.0 cm, and RMS bunch length oe = 4 mm. The 
TBCI results are listed in Table 4. We see that resonant fre- 
quencies are lower with more corrugations as anticipated. The 
transverse loss factor kA also decreases with more corrugations. 
However, it is interesting to see that Im 2,/f, Im Z_ and kil 

are almost independent of the number of corrugations. These 
are in fact the quantities used in the study of single-bunch and 

roupled-bunch instabilities as well as parasitic heating. In order 
lvords. we can safely use the formulae developed in the previous 

sections to compute these quantities per corrugation, multiply 
them by the number of corrugations in the ring, and use the final 
results in the stability criteria and parasitic energy loss formula. 

n f,ll fri Im q lf Im ZL kll kl 
GHz GHz RjGHz n/m 1011~/3ec lO”njm/sec 

22.3 
19.9 

Table 4: The resonant frequencies, impedances at zero frequency and 
loss factors for n = 1, 5, 20, 40 corrugations. All values shown are per 
corrugation. Each corrugation has a depth of 5 mm and period 3 mm. 
The beam pipe radius is 2 cm and the RMS bunch length 4 mm. 
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