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Abstract 

The one-dimensional fast-time 
Hamiltonian H 

averaged 
for an 

constant param?ter wiggler 
electron passing through a 

and a radiation field is 
derived. Integration of the linearized Vlasov 
equation with perturbing sidebands over the 
unperturbed orbits found from H yields the sideband 
growth rates including 
particles. 

both tpapped and untrapped 
The growth rates 

sidebands 
for the upper and lower 

are found absolutely symmetric, while 
stability is determined by the sign of df /d 
f is the zeroth 
B 

order distribution of th? as mptotic 3 
where 

w ve particle equilibrium evolving the 
unperturbed motion 

along 
from some given initial 

distribution, and “b is 
ponderomotive well. 

the bouncing frequency in the 

Introduction and Summary 

The growth of parasitic modes at frequencies near 
the main signal frequency during high power FEL 
operation was theoretically predicted 
1980’s. Since then 

[1,2] in early 

[3,4] and 
there has been ample numerical 

experimental [5,6] evidence of sideband 
excitation in constant wiggler FELs. Unstable modes 
in variable wiggler FELs have also been observed in 
simulations [7-91 and recently in experiment [lo]. 
Sidebands degrade the main signal efficiency and 
optical quality by channeling a considerable fraction 
of the power into parasitic frequencies. The 
performance of the mirrors in an oscillator can be 
harmed from the modulation of the wave envelope caused 
by the sidebands. Last, but not least, interaction 
among nearby sidebands above a certain amplitude may 
lead to chaotic particle motion, loss of trapping and 
incoherent radiation. 

The above have stimulated a considerable amount 
of theoretical work focused on 
Simple 

sideband growth. 
one-dimensional configurations that are 

analytically tractable have been used to model the 
situation. Two lines of approach have been 
considered. 
particle 

The single particle picture regards the 
trajectories as functions of the initial 

conditions and computes the gain by ensemble averaging 
over initial distributions 17-91. The alternative 
approach assumes some adiabatic equilibrium between 
the particles and the main signal and examines the 
stability of the perturbations 
sidebands, solving the kinetic 

induced by the 

Because of the equilibrium 
equation [11,12]. 

method is more 
assumption the kinetic 

appropriate 
amplifier. 

for FEL operation as an 

results have 
In both treatments so far, 

been obtained 
analytic 

only for particles 
localized near the bottom of the ponderomotive well. 
This implies the following limitations: The sideband 
spectrum becomes discrete 

w 

i 

= wr + (kp,)ny,(O), kr/kw= 2y;, (1) 

where (0) 
of the 

is the bounce frequency at the bottom 
ucket, kr kw are the radiation and wiggler 

wave numbers respectively 2 2 -l/2 and y =(1-v /c ) 
untrapped pagticleg 

. 
contribution from 

The 
and 

particles 
trapped 

effect of 
away from the bottom is neglected. The 

the shear d /dJ, where the action J 
parametrizes the distant 3 from the centre of the 
separatrix J=O, is lost. 

Here canonical formalism is introduced by 
expressing the unperturbed particle orbits in terms of 
action-angle variables. The unperturbed orbits, shown 
in Fig. l(a), are the fast time averaged “synchrotron” 

oscillations of the electrons in the potential well 
formed by the combined action of the wiggler and the 
radiation signal. The perturbed kinetic equation is 
solved in action space, starting from an equilibrium 
extending over all trapped and untrapped electrons. 
We fipd that the normalized growth rate g*=(d/dt In 

as)wr is given by [13] 

n3w2 
gf _ ; a2 s 2 

W 
ms 2u,w; 

n n 

with w the beam plasma frequency, wb the synchrotron 
frequegcy for trapped electrons, a and a the 
normalized radiation and wiggler amplitgdes, w Xnd w 
the radiation and sideband frequencies andr Q th$ 
Fourier harmonics of the decomposition of” the 
ponderomotive phase into synchrotron harmonics. The 
superscript + or - corresponds to upper w >w and 
lower w <w sideband respectively. 
implicitfy 6~ the resonant condition 

Jn il given 

+n%(J,) = (kw/kr) (us-w,), (3) 

as illustrated in Fig. l(b). The sum over n on the 
right-hand side of Eq. (2) includes the contribution 
from all resonant groups of particles. The action J 
in Eq. (3) labels the orbit having the nth harmonic of 
the local bounce frequency in resonance with the 
sideband. The gain is determined by the slooe of the 
distribution function f near these resonant orbits 
J=J . Equation (2) has’the following implication for 
thensideband growth. 

(a) the spectrum becomes continuous replacing 

%(O) by 
2 

(J) in Eq. (1). The modes located at the 
peaks of t e unstable spectrum grow faster, emerging 
as the discrete spectrum that is observed in 

simulations. 

(b) More than one group of particles are in 

resonance with a given sideband frequency w through 

different harmonics of their bounce freqiency and 
contribute to the growth rate. 

Cc) Upper and lower sidebands located 

symmetrically around the main signal frequency have 
;;io;;;z gains (complementary stability). Therefore 

always unstable. There is no stable 
distributiiz fo(J) except the trivial one dfo/dJ=O. 

Cd) The shear d /dJ ’ 
?I 

stabilizing. 
Distributions with gradients f /dJ lizaliaed near the 
separatrix are found to have t8e minimum growth rates 
because of the high shear there. This type of 

distribution is relevant to FEL’s with tapered 

wigglers. 

(e) The gain is 
the relative population 

ProPortional to [df(J)/d%(J)], 
in 

resonance, in 
oscillation quanta around 

agreement with 
interpretation. 

the quantum mechanical 

(f) For any smooth distribution, of finite 
df /dJ, electrons at the bottom of the well have a 
nelligible effect on stability. 

(g) Previous results, finding lower sidebands 
having an inherently larger gain than upper sidebands 
are relevant only to the limiting case of a sing&a; 
&function di;ifiii;ion fo(J)=S(J). 
unrealistic 

This case is 
a wide, smooth 

distribution in action f (J) corresponds 
initial 

to even an 
ideal cold beam distributyon in momentum fo(p)= 
GP-Po). 
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Figure 1 Time averaged motion without the sidebands. 

(a)Plots in phase space of the unperturbed 
orbits H (P,y)=K. 
the hor?sontal line 

The intersections with 
P=const. mark the 

initial conditions for each orbit. (b) The 
normalized bounce frequency “b and the 
first two harmonics as functions of the 
trapping parameter X2(J). The intersections 
with the horizontal line 6=(w -w )k /k 
determine the position J n of th8 r&soXanf 
orbits for a given w 

S’ 

The normalized gain g /w is plotted against the 
percentage mismatch (w -br)?wr for both upper and 
:;;;; G~s~;;~sni; Ffg. f. The co;~r~~~:~~~du~nt~h~~~ 

rn Eq. (2) 
plots. The parameters chosen correspond to a wiggler 
wavelengih Xw=3 cm, main signal strength 
a =5x10 beam energy of 

aw=5, 

ai?d 
11.43 MeV (p0.999, y=22.37) 

6 25,;;r6;;r,) densiiy j=lOO A/cm (beam densi:); 
have chosen two types 

equilibrium 2di~r~t~~‘:n;~D2fo~~~~er~~) aT”“t~;~“,“,~a:~ 
if(J;=(1/2nD ) 

t e island and of characteristic lengths D equal to 
half the island width D=J /2 in Fig. Z(a) and the 
island width D=Js in Fig. 
distributions of the form f 

f(b). (ii)l~y;x;~J;;;~P; 

with N=16. 
(J)=$$@D) 

Selecting a=(N?N-1) places the sharp 
gradient at J=D and we plot 
2(c) and D=Js in Fig. 2(d). 

the case D=Js/2 in Fig. 
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The limit of a &-function distribution 
f =a(~-J ), examined elsewhere 1131, yields the 
f&test Erowth but is of small practical interest, 
because even the case of a monoenergetic beam 
distribution p =p is described 
smooth distribufio8 fo(J) of 

in J-space by a 
finite width AJ (see 

Fig. 1). 
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2. Normalized gain for monotonic distributions 
centered at the bottom of the well J=O 
including the first three harmonics 
n<4 in Eq. (2). (a) Gaussian distribution 
of width D equal to half the island width 
w, D=Js/2 (b) Gaussian distribution with 
D=J . (c) Step-like distribution with 
D=JS/2 and (d) Step-like distribution with 
D=Jz. 
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