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The nonlinear motion of electrons in a 
continuously rotating quadrupole free-electron laser 
is analyzed. The equations of motion are described by 
a three-dimensional Hamiltonian system. BY applying a 
set of canonical transformations the three degree-oP- 
freedom Hamiltonian is reduced to a two degree-of- 
freedom Hamiltonian. The effect of the betatron- 
synchrotron resonance in the quadrupole FEL is then 
analyzed. 

Considerable interest has been expressed 
recently in the possible utilization of magnetic 
quadrupoles in free electron lasers for focusing of 
the electron beam' ' and for wigglers.5 ' 

Here, we analyze the nonlinear motion of 
electrons in a free electron laser under the combined 
influence of a continuously rotating quadrupole 
magnetic wiggler and a circularly polarized electro- 
magnetic wave. The linear theory of this 
configuration has been presented previously.6 ' 

The nonlinear equations of motion of a 
relativistic electron in the quadrupole FEL can be 
deduced from the Hamiltonian 

with 

H=; 
P* 

(Pi + Pi + -li) + &2(x2 
*a 

+ Y2) 

- a(x cosx + y sinx) (1) 

mQ = [(l + 8i)Yi]-1 . 

All quantities in (1) are dimensionless, x and y are 
normalized to k the wiggler wavenumber. 
wave amplitude aq;s given by 

The beat 

14*EOB0 1 - B. 
a = 

m2k2c4 
( --+ * 

q Boyo 

and the wiggler strength is characterized by 

IelB 0 
a=-, ‘1 

mc‘k Y 
qo 

where E is the amplitude of the electromagnetic wave; 
B. is t e value of the magnetic field at the distance R 
of one wiggler wavelength from the z-axis; I3 and y 
are the resonant velocity and energy, 

0 respegtively; e 
and m are electron charge and mass, respectively; and 
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c is the speed of light. The quantity x is the phase 
of the electron in the beat wave x,= k(z - 6 

4 
t) + 0, 

where z is the axial position, k is the ormalized 
beat wave number (k = (k + k )/k ), and $ is the 
relative phase between Ehe qcir&larly polarized 
electromagnetic wave and the magnetic wiggler, tim?Iis 
normalized to the wiggler "frequency," (kc) . 
Initially, ; = "k(5 -B ), where 5 
velocity in'the zkdire&?tion. 

is the injection 
Usfng the resonance 

condition we can express 

. 
x0 = t (kr + kq)Bi - kr] /kq 

. 
and denote X0 = Am as the detuning parameter. 

From the Hamiltonian it follows that if the 
radiation field is zero, the particles perform 
transverse betatron oscillations with the frequency 
a. BY switching on the electric field, this 
transverse motion couples to longitudinal oscillations 
due to the ponderomotive force, so that, in general, 
the particle orbits are three-dimensional. For a long 
enough wiggler and for a certain range of the 
parameters and the initial conditions, this coupled 
motion may lead to a detrapping of some particles from 
the ponderomotive potential. Here we study this 
effect. 

The number of free parameters in (1) can be 

reduced by redefining the time t = tRr and (x,y) = 1 L 
R(x,y), where tR = (m 2a/a2)l13 11 and R = (am /4a2)1'3. n. 
The Hamiltonian now has the form 

H =; ("; + P2 
P2 

Y 
+& + l K2(G2 

T + Ii21 

. I 

- *K(X cosx + y sinx) , (2) 

where K = tRU. In terms of the polar coordinates, the 
Hamiltonian (2) can be written 

- 2Kr cos(x-f3) . (3) 

We can achieve a reduction in the degrees- 
of-freedom in the Hamiltonian by performing the 
following contact transformation, using a generating 
function 

F = (x-B)Pb + eP+ , (4) 
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where P and P 
T! 

are new canonical momenta. Making use 
of the'standa d transformation formulae relating the 
old to the new coordinates, we write 0 = 8, 
JI = x - 8, P6 = P , and 

the %amilton~z!n=h~! ~h~%ollo%ngt~~rm 
new 

coordinates, 

P2 
H=$(P:+;+ + 1 c2r2 

2 
- Zxrcos* . 

r 

(5) 

It is to be noted that since the Hamiltonian (5) is 
independent of $, the conjugate momenta P is a 
constant of the motion. The reduction b f the 
Hamiltonian (3) from three degrees-of-freedom to two 
degrees-of-freedom is a manifestation of the helical 
symmetry of the electron motion in the continuously 
rotating quadrupole wiggler. We call P+ the helical 
momentum. 

We can achieve a deeper insight into the 
problem by expressing the Hamiltonian in terms of 
action-angle variables. The details of the calcula- 
tion will be described in the later publication. Here 
we present the final results; the new Hamiltonian has 
a form 

P2 
H = KJ + K(P 

0 
- P+) +$ 

- 2x [(y) cos; + (ycos(; + 2P)l I (6) 

where J and p are action, angle coordinates 

J = $ K(A+B), and 5 = $ - P + arctg i tgP, with 

and 

A2 = lE+12 + /c-l2 - /5-115+/ 

B2 = 15+12 + It-/* + It+\ lc-/ B 

where 

lc+12 = t Pz + [rK + (P - P )/r]*]/4K2 
+ 6 

and 

lc-12 = I P: + [rK - (P 
$ 

- pq)/r]2}/4K2 . (7) 

The complex functions 5, and 5- are related to the 
transverse motion of the particles by the formula 

E(T) = E.+(T)e 
iwT 

+ 5 (T)e 
-iKT 

(8) 

where 

5 = re’” . 

Using (6), we estimate the location of the 

. . 
two primary resonances JI = 0 and 5 + 2; = 0, namely 

2 
=+2K . (9) 

This result was evidenced in the linear theory6 where 
it was observed that the gain peaked when the mismatch 
frequency AU coincided with the betatron frequency 
Aw~-aa-0. 

Assuming that the resonances are well 
separated and K is big, then in the neighborhood of 
. 
s = 0, the Hamiltonian (6) can be approximated 

2 

H=KJ+K(P - p9 
+ 

PJI) + z - K(A + B)cosT . (10) 

. 
Similarly, in the neighborhood of ';6+2i*O,we 
obtain 

H = KJ + K(p - 
Q 

(11) 

The widths of the resonances are 

B_+A l/2 

APJIt = 4K( + - (12) 

Now we can apply Chirikov resonance overlap 
criterionI to estimate the onset of global stochasti- 
city. According to this criterion, two resonances 
will overlap, provided that the sum of their 
respective halfwidths is larger than their relative 
spacing. In our case it follows from (9) and (12) 
that 

S = [(A+B)/2]"2 + [(B-A)/2]"2 2 2K . (13) 

More precise study of the overlap requires 
numerical solution of Hamilton's equations using 
surface of section techniques. We choose Hamiltonian 
(5) to generate the equations of motion. We assume 
electrons are injected with P = 0, 
and $ uniformly distributed between 0 

P+=; ;%, r = 2.8, 

initially. We record the points of intersection of a 
given trajectory with 
points 

the plane PY,.eOs',",;',ce t",; 
with p > 0 are recorded). 

section for thercase of K = 10 is shown in Fig. (la). 
It is seen that the orbits in this case lie on smooth 
curves implying the existence of an additional con- 
served quantity. In fact, in the case of large K 

the equations of motion may be further reduced and 
solved by quadrature.' This third constant of motion 
(in addstion to P 
ly 15 I for P 

and?) turns yt to be approFimate- 

t t 
='- 2~ and /E I for P = +2~ . The 

behav or pictu ed here is quaiitativel f the same as 
that predicted by the pendulum equation. A.5 K iS 
decreased we note that the motion for some initial 
conditions becomes irregular. Figures lb and lc show 
the cases of K = 4 and K = 2, respectively. For 
K = 4, there is a region where all the orbits are 
bounded. A six-island chain separates this region 
from the stochastic region, and then particles with 
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the circulating orbits appear. For K = 2 all the 
orbits are stochastic. 

In principle, particles can remain trapped 
even though their trajectories are stochastic. This 

occurs because conservation of the Hamiltonian 
restricts the values of $ which the particles can 
have. Thus, for example, if J, = + 1~ is inaccessible, 
the particle will remain trapped: There are other 
particles which follow a stochastic orbit and become 
untrapped, but the changes in J, remain modest. The 
above study is only relevant if a tapered quadrupole 
wiggler is under consideration. If a variable 
parameter wiggler is introduced the helical momentum 
P 

8 
is no longer a constant and the 3-D Hamiltonian can 

n t be reduced to the 2-D Hamiltonian. However, 
9 

s we 
showed b fore,' if the conditions for the P 1 2~ or 
P 1 -2~ 9 resonance are satisfied, 
ijitially trapped will stay trapped. 

the pa%ticles if 

Thus we found that for large values of K the 
electrons initially trapped in the beat wave potential 
well will remain trapped. This is consistent with the 
estimate. Approximating the left-hand side of (13) by 
G and using the formulas for K, t , and R and the 
definitions for a, mQ, and a, Eq. (13 becomes 

(1 + 8;)/(1 + So) $ bqrb) 1 (Bo/Eo) , (14) 

where rb is the electron beam radius. 

For most practical cases (14) is very 
difficult to satisfy. Therefore, within the bounds of 
the physical model the betatron-synchrotron resonance 
in the quadrupole FEL will not introduce significant 
threat for the operation. 
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