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Abstract -- 

In a free electron laser (FEL), the radiation 
field, wiggler field and electron beam resonantly 
couple and modify the refractive index in the vicinity 
of the electron beam. The refractive index is 
modified such that the radiation beam will tend to 
focus upon the electron beam. A method for solving 
the 3-D wave equation for the FEL process is outlined. 
This approach, called the source dependent expansion 
method, provides an excellent analytical and numerical 
technique for studying optical focusing, guiding and 
steering in FELs. A radiation envelope equation is 
derived. Conditions and parameters necessary to 
achieve guided radiation beams (constant radius) in 
the exponential gain regime are obtained for FELs 
driven by either induction linacs or rf linacs. 
Immediately prior to saturation in the exponential 
gain region, the ponderomotive potential is large 
enough to trap the beam electrons. The wiggler field, 
at this point, could be tapered to further increase 
the operating efficiency. The possibility of bending 
or steering radiation beams in FELs is discussed and a 
condition necessary for radiation guiding along a 
curved electron beam orbit is obtained. 

Introduction 

In many short wavelength free electron laser 
devices the radiation beam will not be confined or 
guided by a structure such as a waveguide. 
Furthermore, in order to provide high gain and 
efficiency, it is usually necessary for the 
interaction length (length of wiggler field) to be 
long compared to the diffraction length (Rayleigh 
length) associated with the radiation beam. In the 
FEL the tendency of the radiation beam to diffract 
away over a distance of a few Rayleigh lengths can be 
overcome by a focusing phenomenon arising from the 
resonant coupling of the radiation and wiggler fields 
with the electron beam (1,2]. This radiation focusing 
effect plays a central role in the practical 
utilization of the FEL. This phenomenon was first 
analyzed for the low gain FEL with transverse effects 
where it was shown that the diffractive spreading of 
the radiation beam could be overcome by a focusing 
effect arising from the modified index of refraction 
[II. Optical guiding in FELs operating in the small 
signal exponential gain regime has been studied for 
the asymptotic behavior of the radiation beam 13-6). 
Recently, a general formalism for optical focusing, 
guiding and steering has been developed and applied to 
FELs 171. 

In the following, we employ a modal expansion 
technique to examine the optical beam as it propagates 
through the wiggler. The formalism has the merit that 
with only a few modes it permits an accurate solution 
of the wave equation throughout the interaction 
region. 

Model 

In OUL- model, the vector potential of an axially 
symmetric, linearly polarized, radiation field is 

iR(r,z,t) = A(r,z) e i(wz/c-wt) &x/2 + C.C., (1) 

where A(r,z) is the complex radiation field amplitude, 
w is the frequency and C.C. denotes the complex 
conjugate. 

The wave equation governing &R is 

+ a2/az2-cm2a2/at2 hR = - F Jx@x, (2) 
1 

where J (r,z,t) is the driving current density. 
Substituring (1) into (2) leads to the following 
reduced wave equation, 

bk tr 3 + 2i z k a(r,z) = S(r,z,a), ] 
where a(r,z) = [e/A/m c 2 

normalized complex radia?ion 
;mpl/;J,;;p(i@) is the 

and we have 
assumed that a(r,z) is a slowly varying function of z, 
iii,:, i;aa/az)/al << w/c. The source function, S, is 

9 

2n/w 
s = - 42 

s Jx(r,z, t)e 
-i(wz/c-wt)dt, 

C 

0 

ion, S, 
medium 

It is possible to relate the source funct 
to the index of refraction associated with the 
by noting that the wave equation for kR in a 
nonmagnetic, time-independent, nonllnear med 

7 9 99 9 
ium is 

(0” - (n”(r,z,a)/c-)a-/at-)~ = 0, where n is the 

index of refraction associated with the medium and is, 
in general, complex and a nonlinear function of 
a(r,z). Comparing the reduced wave equation writ ten 
in terms of n(r,z,a) with (3) we find that the source 
function can be written in terms of n, 

(4) 

S(r,z,a) = (w/c)2(ln2(r,z,a) a(r,z). 1 (5) 

Source Dependent Expansion Method 

In order to solve 
dependent expansion (SDE) method 171 
we choose the fbllowing ‘:Ipr~:,,:1::o~:~~~~~~~~~~~~ 
terms of Laguerre-Gaussian functions, 

2 2 

a(r,z) = C am(z)Lm 
-(l-iu(z))L- /rs(z) 

, (6) m 
where m = 0,1,2,**.. In Eq. (6), a (z) are the 
complex amplitude coefficients, r (z) is tKe r-adiation 
spot size, a(z) is related to thesradius of curvature 
of the radiation beam wavefront, R = - (w/2c)rs/a 

and L is the Laguerre polynomial. Solving for the 
unknosn quantities am, r and c( in terms of the source 
term S allows us to comsletely describe the radiation 
dynamics. The representation in (6) is underspecified, 
since, when (6) is substituted into (3) and moments of 
the source function taken, there remain more unknown 
quantities than available equations. The additional 
degrees of freedom in our representation allow US to 
specify a particular functional relationship for the 
unknown quantities r 
radiation beam profife 

and cx in such a way that, if the 
remains approximately Gaussian, 

the number of modes needed to accurately describe the 
radiation beam is small. This yields the following 
first order coupled differential equations for rs and 
a1 

r; - Zc~/‘wr~ = - rs Hl, 17a) 

n’ 
2 2 - Z(l+cc )c/wr- (71~) s ?(H R - UH,)’ 
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and a set of first order ordinary differential 
equations for the complex amplitudes a,(z), 

am - mBa * 
m m-l - (m+l)B a 1 m+l ’ (7c) 

where H = Fl/ao, 
and imaginary part of the 
(7), the functions Am, B, and Fm are given by 

A,(z) = r;/rs + i(Zm+l)((l + 2)c/w~ - ar;/r s + a’/2 , 
I 

B(Z)=- ar’s/rs+(l-uz)c/wrz - 
c n’/2 -i 

1 c 
r-;/rs- 2ac/wr 

2 
1 s ' 

m 

F,(z) = k 
I 

dC s(Z,z)L,(~)exp(-(l+iu)~/2), 

0 

where C = 2r2/r2 s’ 

The merits of the SDE method can be demonstrated 
in a comparison between; a) the exact numerical 
solution of the wave equation in (3), (using 64x64 
Fourier modes), b) the solution using a vacuum 
Laguerre-Gaussian modal expansion (10 modes) and c) 
the solution from the Laguerre-Gaussian SDE approach 
(10 modes). Figure 1 shows the radiation beam 
amplitude on-axis obtained from methods (a), (b) and 
(c) after four Rayleigh lengths for the FEL parameter 
in Table I. The SDE solution (c) is in excellent 
agreement with solution (a) while solution (b), beyond 
a Rayleigh length, grossly deviates from (a) and (c). 

Fig. 1 

X&(O) where 

Radiation amplitude profile, la(r,z) 1 for: 
a) exact numerical solution (64x64) Fourier 
modes), b) vacuum modal expansion solution 
(10 modes), and c) SDE solution (10 modes) at 
a distance of z = 4ZR. 

K2=( ~c/w)~ (-l+C’< sln*>2+2C<cos$>+(w/2c)r~C <sin@ ri4, 
I 

(13) 

;;f,S6~) = Q;/y)G(z)aw/!ao(z) /, measures the coupling 
radiation and electron beam, 

” = ‘“b. Kb/2C) 
2 

= Ib/17x103 is Budker’s constant, 

Ib is the electron beam current in amperes, 

G(z) = (1-f)/(l+f)2 and f(z) = (rb/rs)2 is the filling 

factor associated with a Gaussian electron beam 
density profile. The first term on the right-hand 
side of (13) is the usual diffraction ter-m, the second 
and third terms are focusing while the last term 
provides a focusing or defocusing contribution. r I, 
the high gain trapped particle regime, <sin+> and 

<cos$Q are approximately constant, while 
increases with z. 

la (z)I 

beam (r; = 
Hence, K depends on z and a ggided 

0) cannot be exactly maintained in this 
regime, although, the radiation envelope is still 
reasonably well-confined. 
particle regime 
therefore, a can be approximately 

Refractive Index Associated with FELs 

In the following derivation of the refractive 
index associated with the FEL, a number of simplifying 
assumptions are made. We assume, for example, that 
the beam electrons are monoenergetic without betatron 
oscillations and that the radiation is of a single 
frequency [a]. To obtain an expression for the 
refractive index we vrite the nonlinear driving 
current density, .Jx, as 

ix = - le Inb(r)~y(z)vozsS(z-~( t, to))dto, (8) 

where n (r) is the 
!? 

ambient beam density, v is the 
axial e ectron velocity at 2 = 0, t is ti?g time a 
given electr-on crosses the z -: 0 plane,’ 

v_“(z) = le]Aw/ymoc(exp(ikwz) + c.c.) ex/2, 

is the wiggle velocity, y is the Lorentz factor, A is 
the vector potential amplitude of the planar wigiler 
field and k =2n/X the wiggler number. 
Substituting y8) inY0 :ie expression for Za”T4), gives 

S= [T]2awj,“:Z/2nJ-,toei “~+k’lz~wt’b(t-r(zo, t))/v, 

0 

(9) 

where a w = lelAw/moc2, ‘T = to + [dz!/vz(z. ,t,) and 

0 

the t integration is over 
(9) w?th (5) and carrying 

all entry times. Equating 
out the integration over t, 

we find the index of refraction associated with the 
FEL to be given by 

nfel(r,z,a) = 1 + (d(r)/ZJ) x (c), ’ (10) 

0 

where 

J, = ~z(w/c + kw - iln(a/lal) - w/vZ(z,+o))dz + Q~, 

0 

is the relative phase between the electron and the 
ponderomotive wave, $, = - tit0 is the initial phase of 

2n 

a given electron and 
0 “0 

= (2n)-l 1 dq, is an 

0 

ensemble average over the initial phases. The radial 
profile of the index of refraction as given by Eq. 
(10) supports self-focusing of the radiation in an 
FEL. It should be noted, for completeness, that the 
relative phase satisfies the pendulum equation given 
by 

a2qdaz2 = akw/az - Y-~(w/c) ba+az -kVawa sin$]. (11) 

Radiation Beam Envelope Equation 

Equations (7a) and (7b) can be combined to give 
the following envelope equation for the radiation beam 

2 r; + K r 
S 

= 0, (12) 
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achieved. In either the Compton or Raman exponential 
gain regime, conditions for a stable guided beam can 
be found. 

Guided Radiation Beams in the Exponential Gain Regime 

In this section, we obtain the necessary 
conditions to achieve guided radiation beams in both 
the Compton (noncollective) and Raman (collective) 
exponential gain regimes. By considering the lowest 
order mode (Gaussian profile) we find that the source 
term appropriate for the high gain Compton and Raman 
regime is, respectively, 

1 

S(r z)=(wb(r)/c)2(awkyiB)2 (Al-ir)2 
, 

v(l++2) 
a(r,z) 

I 

l/2 
Y YzC 

Z%(r)(A!-iT) 

(14a,b) 

where &k and r are the wave number shift and growth 
rate respectively and fB is the usual difference of 
Bessel functions due to the linear wiggler. The 
lowest order mode is taken to have the form 

a(r,z) = ao(0)exp(i 
s 

(Ok-iT)dz’~(l-ia)r2/r~). (15) 

0 

For the purposes of illustration, we will consider the 
Compton FEL regime in which the electron beam has a 

Gaussian density profile, n,(r) = noexp(- r2/rt). 

The conditions for a guided radiation beam require 
that the waist and curvature of the radiation beam 
remain constant, (r’ = rr’ = 0). Setting r’ = a’=0 in 
Eqs. (7a,b) and sol$ing for r, hk, r ,Sand a, the 
following results for a guided beam are obtained. 

r = (l+a2)-+l+2f)-lro, Llk-ur, (16a,b) 

r = 
S 0 

l/4 x 
1: " 

v 27/4 
MB 

l/2 

rs(f=l) = 0.25 Xwkj1'4 (led) 

a = (f/(2+3f)P2, (16e) 

where To=2fB(~/y) l/2 awkw( l+az./Z) -l/2 and f=r2/r2 is b s 

the filling factor. 

Figure 2 shows the spatial evolution of the 
radiation waist for the induction linac driven FEL 
parameters in Table I. The parameters in Table I are 
consistent with Eqs. (16) and have been chosen to 
produce a guided radiation beam in the Compton 
exponential gain regime. The guided beam conditions 
can be shown to be stable 191, this is shown 
numerically by changing the spot size of the injected 
radiation beam. Figure 3 shows that irrespective of 
the initial value, the spot size asymptotes to the 
matched (guided) beam value. Figure 4 shows the 
evolution of the spot size for the rf linac-driven FEL 
parameters in Table II. As in Table I, the parameters 
in Table II have been chosen to produce a guided 
radiation beam in the Compton exponential gain regime 
and are consistent with Eqs. (16). 

Fig. 

0.00 1 1 1 1 

0 12 3 

zh!R 

Spatial evolution of the 
in the exponential gain 

radiation spot size 
regime for induction 

linac driven FEL parameters given in Table I. 

z(m) 

Fig. 3 Spatial evolution of the radiation spot size 
in the exponential gain regime for initial 
spot sizes; a) 0.35 cm, 
0.15 cm. 

b) 0.24 cm, and c) 

0 2 4 6 8 10 

Z/ZR 

Fig. 4 Spatial evolution of the radiation spot size 
in the exponential gain regime for rf linac 
driven FEL parameters given in Table II. 
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Free Electron Lasers driven by either induct ion 
or rf linacs could initially operate in the guided, 
exponential gain regime un t i 1 saturation occurs. 
Immediately prior to saturation, the ponderomotive 
potential can be large enough, as in the above 
illustrations, to trap a significant fraction of the 
beam elect ~-0~s. At this point, the wiggler field can 
be spatially tapered to achieve a significant increase 
in the operating efficiency and a somewhat smaller 
input signal into the FEL amplifier. 

To determine the viability of the 
wiggler, prior to saturation, 

tapering 
the trapping potential 

associated with the ponderomotive wave is needed. For 
linearly polarized waves, the fractional trapping 
potential is 

le I+trap = 2J2 saw 1/Z 
ymoc2 i 1 l+ai/2 

(17) 

The radiation amplitude at saturation can be obtained 
from the intrinsic efficiency of the FEL. Using 
arguments based on electron trapping in the 
ponderomotive wave, we find that the intrinsic 
efficiency in the exponential (maximum) gain regime is 

n = &k/k w’ (18) 

Using the induction linac parameters in Table I as an 
illustration, we find that the intrinsic efficiency is 
J = Ak/k = 0.66%. From this, the fractional 
trapping”potentia1 at the end of the exponential gain 

regime is lelOtrap /vmoc2=6%, making it possible to 

trap the electron beam while tapering the wiggler 
field. In addition, the initial fractional energy 
spread of the electron beam must be somewhat less than 
n. This places a limitation on the fractional energy 
spread of the electron beam, &E/E < 0.66%. One 
contribution to the beam b energy spread is the 

transverse emittance, 6E/Eb = (1/2)(Enirb)2. 

Therefore, the normalized beam emittance must satisfy, 

cn < (2Akik”)1’2rb = 0.034 cm-rad. 

Bending and Guiding of Radiation Beams 

Using the SDE formalism, it is possible to 
discuss the bending of a radiation beam by a curved 
electron beam in an FEL. For small displacements of 
the electron beam centroid, a nonaxisymmetric modal 
expansion similar to (6) can be performed and the 
spatial evolution of the centroid of the radiation 
beam found . Figure 5 shows the centroids of the 
electron and radiation beams for an FEL in the trapped 
particle regime with parameters given in Tahle I. 
Steering of the radiation beam by the electron beam is 
clearly demonstrated in this figure. 

It is interesting to consider the conditions 
under which the radiation beam could be guided by a 
cuLved elects-on beam, as shown in Fig. 6. Such a 
situation could make possible a cyclic FEL driven by, 
for- example, a betat]-on generated electron beam. In a 
cyclic FEL, the radiation beam would be guided by a 
cil cular electron beam. The wiggler field, which is 
along the circular or-bit of the electron beam, cannot 
be spatially contoured. Therefore, in the trapped 
particle regime, enhancement of the FEL efficiency 
must be achieved by inducing an accelerating electric 
field along the beam orbit. FOX- cyclic electron 
11ea:i-s ) the induced electi-ic field can be generated by 
increasing the magnetir flux w i t h i II the or-bit of the 
elect ran beam. 

r[ , , , , , 

Q 2 4 6 0 IO 

Fig. 5 Electron and radiation beam centroids, 
and xL for a ‘b displaced electron beam, 
;b ==2n;R(lIs;;h(kcz)) with xc = rb/4 and 

C C R’ 

x 
r S 

nr 
b curved 

e-beam 

Fig. 6 Configuration showing guiding of radiation 
beam by a curved electron beam with radius of 
curvature, R 

0' 

To examine the conditions under which guiding can 
be achieved in the exponential gain regime, we denote 
the radial position by r = R + x, where R is the 
radius of curvature of the elgctron beam and 8 is the 
radial displacement from the center of the curved 
electron beam (see Fig. 6). The FEI. Irefractive index 
(correct to order x/Ro) is 

n = nfel + x/Ro, (19) 

where nfel is given by (10). In the exponential gain 
regime, a guided radiation beam in a curved FEL is 
possible if R. >_ Rmin where 

R. = mln rs/ IRe(l-nfel) I. (20) 

jubstituting the expressions for r, 
Zqs. (16), into (20) yields 

Ak and ts, fl o,,, 

Rmin’ 

4(l+f)fv2rb 

(1+2f)(3f+Z)“*fBa”(l+a~/Z)1’2(v/~)1’2’ 
(*la) 

2 

.< min(f”l) = 
1.2 y Lb 

-. 
fBa”(l+a~/2)“‘(u/Y)1’2 

(21b) 
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For a numerical example Of Rmin’ consider the 

following parameters, y = 100, I = 2 kA. rb = 0.3 cm, 

a = 1.72, f = 1 and fg = 0.85 (Table I). For these 
phnetern, the minimum turning radius required for a 
guided radiation beam is R min = 455 m. 

Table I 

Parameters Associated with an Induction Linac Driven 
FEL in the Exponential Gain Regime 

Electron Beam 
Current 
Energy 
Radius 
Emittance 

Wiggler Field 
Wavelength 
wiggler Strength 

Radiation Beam 
WavelenEth 
Spot Size 
(guided beam) 
e-folding length 

Intrinsic Efficiency 

Saturated Power 

Trapping Potential 

X =8cm 
Bt = 2.3 kG (aw = 1.72) 

X = 10.6 urn 
r 

S 
= 0.25 cm, (ZR = 2 m) 

Le = l/r = 94 cm 

rj = &/kw = 0.66% 

P sat 
= 660 MU (a = 7~10~~) 

lel+ trap 
6.0% 

Table II 

Parameters Associated with an RF Linac Driven 
FEL in the Exponential Gain Regime __-__ 

Electron Beam 
Peak Current 
Energy 
Radius 
Emittance 

Ib = 500 A 
Eb = 150 MeV 
r Eb ; ix’;;-3 cm-rad n - 

Wiggler Field (planar) 
Wavelength x = 12 cm 
Wiggler Strength Bz = 900 G (aw = 1) 

Radiation Beam --. 
Wavelength x = 1 Urn 
Spot Size 
(guided beam) 

rs(0) = 1.1 mm (ZR = 3.8 m) 

e-folding length Le = l/r = 196 cm 

Intrinsic Efficiency Q = &/k = 0.25% w 

Saturated Power P sat = 180 MW (a = 7.25~10-~) 

Trapping Potential le/Q trap 

Conclusion ___--- 

The source dependent expansion (SDE) method 
provides an excel lent analytical and numer-ical 
technique for studying optical focusing, guiding and 
steering in FELs. We find that guided radiation beams 
in the FEL can be arhieved both in the Compton and 
Raman exponential gain r-eginles bu t cannot be 
maintained in the high gain tlapped particle (tapered 
wiggler) regime. 

Free electron lasers driven by either induction 
linacs, such as the ATA, or high current rf linacs can 
operate in the guided, exponential gain regime until 
saturation occurs. At this po i II t , the wiggler field 
could be spatially tapered so as to operate the FE:L in 
the trapped particle regime in order to further 
increase the operating efficiency. 

We also examined the possibility of bending OL- 
steering radiation beams in FELs. We find a condition 
which places a lower limit on the radius of curvation 
of the electron beam necessary for the radiation to be 
guided along a curved path. 
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